
MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

MUSCLE Cryptographic Card Edge

Definition for Java1 Enabled

Smartcards

David Corcoran corcoran@linuxnet.com
Tommaso Cucinotta cucinotta@sssup.it

This document is provided on an as-is basis. Neither the authors nor the MUSCLE project are

responsible for any mishaps that may occur from the use of this document. This document may be

distributed freely but modifications must be returned to the authors and the authors’ names must

retain on the document as original authors.

1 Java® and Java Card® are trademarks of Sun Microsystems, Inc.

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

Change Log:

Version 1.0

November 22, 2000

Original writing, Dave Corcoran, corcoran@linuxnet.com

Version 1.0.1

July 16, 2001

Function clarification, added return code lookup table, Alex Russell, alex@netWindows.org

Version 1.1.0

Sept 10, 2001

Added ACLs, KeyBlob definitions.

Tommaso Cucinotta, cucinotta@sssup.it

David Corcoran, corcoran@linuxnet.com

Version 1.2.0

Sept 25, 2001

Allocated instruction codes

Added List commands

Added ISO Verify compatibility

Version 1.2.1

October 4, 2001

Modified some instruction bytes

Added GetStatus command

Fixed some global defines

First release with Alpha implementation

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

Table of Contents

Section 1. Context and conventions ... 7

1.1. Introduction.. 7

1.2. Security model ... 8

1.3. ACL for objects ... 9

1.4. ACL for keys ... 10

Section 2. Functional declarations ... 12

2.1. Basic data types’ encoding .. 12

2.2. Key blobs ... 13

RSA KeyBlob Definitions... 14

Key Type RSA_PRIVATE_CRT... 14

Key Type RSA_PRIVATE .. 14

Key Type RSA_PUBLIC... 15

DSA KeyBlob Definitions... 15

Key Type DSA_PRIVATE .. 15

Key Type DSA_PUBLIC... 15

DES KeyBlob Definitions ... 16

Key Type DES ... 16

Key Type TRIPLE_DES.. 16

Key Type TRIPLE_DES_3KEY.. 16

2.3. Summary of commands ... 17

2.4. General return codes .. 18

2.5. APDU Reference ... 20

2.5.1. MSCGenerateKeyPair .. 21

2.5.2. MSCImportKey .. 24

2.5.3. MSCExportKey.. 26

2.5.4. MSCComputeCrypt.. 28

2.5.5. MSCExtAuthenticate.. 32

2.5.6. MSCListKeys ... 35

2.5.7. MSCCreatePIN... 37

2.5.8. MSCVerifyPIN... 39

2.5.9. MSCChangePIN... 41

2.5.10. MSCUnblockPIN ... 43

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

2.5.11. MSCListPINs ... 45

2.5.12. MSCCreateObject .. 46

2.5.13. MSCDeleteObject .. 48

2.5.14. MSCWriteObject.. 50

2.5.15. MSCReadObject... 52

2.5.16. MSCListObjects ... 54

2.5.17. MSCLogoutAll ... 56

2.5.18. MSCGetChallenge.. 57

2.5.19. MSCGetStatus .. 59

2.5.20. ISOVerify ... 61

Section 3. Glossary... 63

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

Document Scope

The scope of this document is to provide a definition of command set to provide

base cryptographic functionality through and abstract interface using Java enabled

smartcards and cryptographic tokens.

Smartcards require large amounts of complex middleware that communicates

with the card and exports the card's functionality to the host. These cards

typically vary from release to release so this middleware generally is in constant

change. Currently each card must have it's own CSP (crypto/card service

provider) on the host creating large support problems and security trust well

beyond most OS vendor's preferences.

Using this applet approach, it is required that only one host CSP be written for the

middleware, thus reducing the time spent migrating to new card releases and

vastly reducing the number of CSP's on the host. At the time of this writing, this

definition will be supported on Java Card 2.1 compliant cards. The applet will be

loaded on the card with a static application identifier (AID) and the host based

CSP will communicate to the card through this applet. The Java Card API's

support a wide array of cryptographic capability including both symmetric and

asymmetric functions, random number generation, key generation/management,

and PIN management. Although the scope of this document describes Java

Card’s, any programmable smartcard can work with this definition.

This specification was not written to encompass all the functionality of the

Java Card platform but rather to provide a minimum subset of calls to

enable most cryptographic applications the ability to make use of the

smartcards as a key token. This is an evolving specification so future

commands and calls might be added to provide compatibility with other

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

standards such as PKCS-15 and existing infrastructures on other

platforms.

Figure 1.1.1 describes how this applet can communicate with other security and
cryptographic components in the larger schema.

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

Section 1. Context and

conventions

1.1. Introduction

The Applet is capable of generating cryptographic keys on the card, and allows

external keys to be inserted onto the card. These keys can be used in

cryptographic operations, after proper user (or host application) authentication.

The Applet is capable of handling generic objects. An object is a sequence of

bytes whose meaning is determined by the application. The Applet allows a host

application to read and/or modify objects’ contents, after proper user (or host

application) authentication.

An object is identified by means of a 4-byte object identifier. Any object ID is

available from 0x00000000 to 0xFFFFFF00. Other object IDs are reserved. IDs

0xFFFFFFFE and 0xFFFFFFFF are reserved, respectively, as import and export

buffers for transporting data to and from the card when it does not fit into a single

APDU. The use of these special objects allows large keys and cryptogram to be

exchanged and alleviates the problem of 255-byte maximum transfer size. For

security reasons the Applet must delete these objects as soon as possible.

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

1.2. Security model

An identity number refers to one of 16 mechanisms (at maximum) by which the

card can authenticate external applications running on the host. Each mechanism

can be:

• based on a PIN verification: identity numbers from 0 to 7 (PIN-identities) that

are associated to PIN numbers from 0 to 7

• based on a challenge/response cryptographic protocol: identity numbers from

8 to 13 (strong identities) that are associated to key numbers from 0 to 5

• reserved for alternative authentication2 schemes: identity numbers 14 and 15

After an authentication mechanism has been run successfully, the corresponding

identity is said to be “logged in”. Each identity is associated a counter for the

maximum number of times an authentication mechanism can be run

unsuccessfully for that identity. On a successful authentication the counter is

reset. On an unsuccessful authentication the counter is decreased and, if it goes to

zero, the corresponding identity is blocked and can not be logged in anymore. PIN

codes have an unblock mechanism3.

A PIN-identity login requires a PIN code verification. The PIN number is the same

as the identity number. Strong identities involve use of cryptographic keys. Strong

identity n.8 requires use of key n.0, identity n.9 requires key n.1, and so on up to

identity n.13. Login mechanisms for identities 14 and 15 are not specified in this

release of the Card Edge specifications.

Each key or object on the card is associated with an Access Control List (ACL)

that establishes which identities are required to be logged in to perform certain

operations. The security model is designed in such a way to allow at least four

levels of protection for card services:

• no protection: the operation is always allowed; in such a case the ACL

requires only the anonymous identity to be logged in for the operation

2 Such as biometric recognition
3 See CreatePIN and UnblockPIN commands for details.

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

• PIN protection: the operation is allowed after a PIN verification; in such a

case the ACL requires a PIN-based identity to be logged in for the operation

• strong protection: the operation is allowed only after a cryptography based,

strong authentication of the host application (and optionally a PIN based

authentication of the user); in such a case the ACL requires a strong identity to

be logged in for the operation (and optionally a PIN based one)

• full protection (operation disabled): the operation is never allowed.

The use of a private key on the smartcard is usually PIN protected, but some

applications could require a strong protection. Reading of a private key is usually

disabled. Public objects may be always readable, but their modification could be

PIN protected. Private objects could require PIN protection for reading and

protection with another PIN or strong protection for writing.

1.3. ACL for objects

Object related operations are:

• creation

• read object

• write object

• deletion

Only read, write, and delete are regulated on a per object basis. An object creation

is always allowed after pin #0 verification, if the object does not already exist.

Every object is associated with an ACL of three bytes, where each byte

corresponds to reading, writing and deletion permissions, respectively:

ObjectACL:

Short Read Permissions;

Short Write Permissions;

Short Delete Permissions;

A permission 2-bytes word has the following format:

Bit 16 (M.S. Bit) Identity #15 required (reserved identity)

Bit 15 Identity #14 required (reserved identity)

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

Bit 14 Identity #13 required (strong identity)

...

Bit 9 Identity #8 required (strong identity)

Bit 8 Identity #7 required (PIN identity)

...

Bit 2 Identity #1 required (PIN identity)

Bit 1 (L.S. Bit) Identity #0 required (PIN identity)

If no bit is set on a permission word, then no authentication is required for the

operation. If one or more bits are set, but not all, then all identities corresponding

to set bits must be logged in to perform the operation. The special value 0xFFFF

(all bits set) disables the operation at all. Possibilities are clarified in the following

examples:

Hex

Value
Meaning

0x0000 Operation always allowed

0x0004 Identity n.2 (PIN) required

0x0101 Both Identity n.0 (PIN) and identity n.8 (strong) required

0xFFFF Operation never allowed

1.4. ACL for keys

Operations involving cryptographic keys are:

• creation (injection or on-board generation)

• read key

• write key

• computation (encrypt, decrypt, sign, verify)

Only read, write, and computation are regulated on a per key basis. A key creation

is always allowed after pin #0 verification, if the key does not exist yet. Every key

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

is associated with an ACL of three 2-bytes words, where each word corresponds

to reading, writing and using permissions, respectively:

KeyACL:

Short Read Permissions;

Short Write Permissions;

Short Use Permissions;

A permission word has the following format:

Bit 16 (M.S. Bit) Identity #15 required (reserved identity)

Bit 15 Identity #14 required (reserved identity)

Bit 14 Identity #13 required (strong identity)

...

Bit 9 Identity #8 required (strong identity)

Bit 8 Identity #7 required (PIN identity)

...

Bit 2 Identity #1 required (PIN identity)

Bit 1 (L.S. Bit) Identity #0 required (PIN identity)

If no bit is set on a permission word, then no authentication is required for the

operation. If one or more bits are set, but not all, then all identities corresponding

to set bits must be logged in to perform the operation. The special value 0xFFFF

(all bits set) disables the operation at all4. See Object ACL description for some

examples.

Note that a key write operation overwrites the associated ACL, too.

4 Note that, when overwriting a key contents (if allowed to), the host application can also change the key
ACL.

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

Section 2. Functional

declarations

This section describes which functions, values, parameters, and behavior are

defined in this document. Return codes for functions can be found at the end of

this document.

2.1. Basic data types’ encoding

A byte is an unsigned integer number, ranging from 0 to 255. Inside APDUs a

byte is encoded with a byte.

A short is an unsigned integer number, ranging from 0 to 65535. Inside APDUs a

short is always encoded as a 2 consecutive bytes, in 2-complement, most

significant byte first.

A big number is an unsigned integer number with a variable encoding size. A big

number is always encoded as follows:

• a short encoding the number’s total size (in bytes)

• the big number value’s bytes, most significant byte first

A key number uniquely identifies a cryptographic key inside the Cardlet. Key

numbers are in the range from 0 to 15 and are always encoded as a single byte.

Two cryptographic keys can be the public and private keys of a key pair. It is up

to the host application to know and correctly handle such situations (see

InjectKey and GenerateKey commands for further details).

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

2.2. Key blobs

A key blob is a sequence of bytes encoding a cryptographic key or key pair for

import/export purposes. Whenever a key or key pair is transferred to the card, the

application first transfers the corresponding key blob into the input temporary

object then invokes the ImportKey command referencing it. Conversely, on a key

or key pair export operation, the application first invokes an ExportKey

operation, then retrieves the key blob from the output temporary object.

A key blob has the following format:

KeyBlob:

Byte Blob Encoding;

Byte Key Type;

Short Key Size; // In bits

Byte[] Blob Data;

Key
Type

Key
Size Blob Data

. . .

. . .

Blob
Enc.

KeyBlob Header

Values for Blob Encoding:

0x00 BLOB_ENC_PLAIN;

0x01 BLOB_ENC_ENCRYPTED (RFU)

Values for Key Type:

RSA_PUBLIC 0x01 Public RSA key

RSA_PRIVATE 0x02 Private RSA key

RSA_PRIVATE_CRT 0x03 Private RSA CRT key

DSA_PUBLIC 0x04 Public DSA key

DSA_PRIVATE 0x05 Private DSA key

DES 0x06 Standard DES key

TRIPLE_DES 0x07 Standard Triple DES key

TRIPLE_DES_3KEY 0x08 Standard 3 key Triple DES key

Allowed Values for Key Size:

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

RSA 512, 768, 1024, 2048 …

DSA 512, 768, 1024, 2048 …

DES 64

3DES 128

3DES3 192

RSA KeyBlob Definitions

In the following Key Blob definitions, names of key components follow the same

conventions as specified in JavaCard 2.1.1 API.

Key Type RSA_PRIVATE_CRT

Blob Header

P Value
. . .

. . .P Size

Q Value
. . .

. . .Q Size

PQ Value
. . .

. . .PQ Size

DP1 Value
. . .

. . .DP1 Size

DQ1 Value
. . .

. . .DQ1 Size

Key Type RSA_PRIVATE

Blob Header

Modulus Value
. . .

. . .Mod Size

Private Exponent Value
. . .

. .Prv Exp Size

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

Key Type RSA_PUBLIC

Blob Header

Modulus Value
. . .

. . .Mod Size

Public Exponent Value
. . .

. .Pub Exp Size

DSA KeyBlob Definitions

In the following Key Blob definitions, names of key components follow the same

conventions as specified in JavaCard 2.1.1 API.

Key Type DSA_PRIVATE

Blob Header

G Value
. . .

. . .G Size

P Value
. . .

. . .P Size

Q Value
. . .

. . .Q Size

X Value
. . .

. . .X Size

Key Type DSA_PUBLIC

Blob Header

G Value
. . .

. . .G Size

P Value
. . .

. . .P Size

Q Value
. . .

. . .Q Size

Y Value
. . .

. . .Y Size

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

DES KeyBlob Definitions

Key Type DES

Blob Header

8 bytes key value
. . .

. . .0x0008

Key Type TRIPLE_DES

Blob Header

16 bytes key value
. . .

. . .0x0010

Key Type TRIPLE_DES_3KEY

Blob Header

24 bytes key value
. . .

. . .0x0018

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

2.3. Summary of commands

Command Name S/R
INS

(hex)
P1 P2 P3 DATA

Key handling commands

GenerateKeyPair S 30 Prv Key N. Pub Key N. Size Gen Params

ImportKey S 32 Key N. 0x00 Size Import Params

ExportKey S 34 Key N. 0x00 Size Export Params

ComputeCrypt S 36 Key N. Operation Size Ext Data

ExtAuthenticate S 38 Key N. 0x00 Size Ext Data

ListKeys R 3A Seq Option 0x00 0x0B -

PIN related commands

CreatePIN S 40 PIN N. Max
Attempts

Size PIN Params

VerifyPIN S 42 PIN N. 0x00 Size PIN Code

ChangePIN S 44 PIN N. 0x00 Size Params

UnblockPIN R 46 PIN N. 0x00 Size Unblock Code

ListPINs R 48 0x00 0x00 0x02 -

Object related commands

CreateObject S 5A 0x00 0x00 0x0E Create Params

DeleteObject S 52 0x00 Zero Flag 0x04 Object ID

WriteObject S 54 0x00 0x00 Size Params

ReadObject S/R 56 0x00 0x00 Size Params

ListObjects R 58 Seq Option 0x00 0x0E -

Other

LogOutAll S 60 0x00 0x00 0x02 0x0000

GetChallenge S 62 0x00 Output Data
Location

Size Chall. Params

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

GetStatus R 3C 0x00 0x00 0x10 -

ISOVerify S 20 0x00 PIN N. Size PIN Code

ISOGetResponse R C0 0x00 0x00 Expected
Size

-

The S/R column is to be interpreted as follows:

• “S”: the command only sends data to the card with the APDU; the P3 parameter

specifies the amount of sent data

• “R”: the command only expects data to be returned from the card with the

response APDU; the P3 parameter specifies the maximum amount of expected

data

• “S/R”: the command sends data to the card with the APDU and expects a

response to be retrieved with an ISO GET_RESPONSE command; the P3

parameter specifies the amount of sent data

2.4. General return codes

The following table shows all the possible status words returned from the Applet

commands, along with a symbolic name and a short description. More specific

information about the meaning of error codes is listed on individual function

description pages.

MSC Return Codes (Status Words)

Value Symbolic Name Description

90 00 SW_SUCCESS (ISO) Operation successfully completed

9C 01 SW_NO_MEMORY_LEFT
Insufficient memory onto the card to
complete the operation

9C 02 SW_AUTH_FAILED
Unsuccessful authentication. Multiple
consecutive failures cause the identity
to block

9C 03
SW_OPERATION_NOT_
ALLOWED

Operation not allowed because of the
internal state of the Applet

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

MSC Return Codes (Status Words)
internal state of the Applet

9C 05 SW_UNSUPPORTED_FEATURE
The requested feature is not supported
either by the card or by the Applet

9C 06 SW_UNAUTHORIZED
Logged in identities don’t have
enough privileges for the requested
operation

9C 07 SW_OBJECT_NOT_FOUND
An object either explicitly or
implicitly involved in the operation
was not found

9C 08 SW_OBJ_EXISTS Object already exists

9C 09 SW_INCORRECT_ALG
Input data to the command contained
an invalid algorithm

9C 0B SW_SIGNATURE_INVALID
The signature provided in a verify
operation was incorrect

9C 0C SW_IDENTITY_BLOCKED
Authentication operation not allowed
because specified identity is blocked

9C 0D SW_UNSPECIFIED_ERROR
An error occurred. No further
information is given.

9C 0E SW_INVALID_PARAMETER
Input data provided either in the
APDU or by means of the input object
is invalid

9C 10 SW_INCORRECT_P1 Incorrect P1 value

9C 11 SW_INCORRECT_P2 Incorrect P2 value

9C 12 SW_INCORRECT_LE
When receiving data from the card,
expected length is not correct.

63 00 SW_INVALID_AUTH (ISO)
Unsuccessful authentication (for an
ISO Verify). Multiple consecutive
failures cause the PIN to block

69 83 SW_AUTH_BLOCKED (ISO)
The PIN referenced into an ISO Verify
command is blocked

6A 86 SW_INCORRECT_P1P2 (ISO) Incorrect values of either P1 or P2
p r meter or both of them

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

MSC Return Codes (Status Words)
parameter or both of them

6D 00 SW_ERROR_INS (ISO) Instruction code not recognized

2.5. APDU Reference

This section describes command APDUs to be exchanged between the card and

the host computer. For each command we specify what parameters are to be

provided as input and their format, and what parameters are to be expected as

output and their format.

For each command we eventually specify error codes that the command can

return in addition to the general ones listed in the previous paragraph.

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

2.5.1. MSCGenerateKeyPair

Function Parameters:

CLA 0xB0

INS 0x30

P1 Private Key Number (0x00-0x0F)

P2 Public Key Number (0x00-0x0F)

P3 Data Size

DATA Key Generation Parameters

Definition:

This function generates a key or key pair using the card's on board key generation

process. The key number (or numbers if a key pair is being generated), algorithm

type, and algorithm parameters are specified by arguments P1 and P2 and by

provided DATA. Appropriate values for these is specified below:

[DATA]

Key Generation Parameters:

Byte Algorithm Type

Short Key Size (in bits)

KeyACL ACL for the private key

KeyACL ACL for the public key

Byte Key generation options

Byte[] Optional generation parameters

Key
Size

Private Key ACLAlg
Type R W U

Public Key ACL

R W U

Gen
Opt Opt. Generation Params

. . .

. . .

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

Values for Algorithm Type:

ALG_RSA 0x01 Private exponent in mod/exp format

ALG_RSA_CRT 0x02 Private exponent in CRT format

ALG_DSA 0x03

Allowed values forKey Generation Options:

OPT_DEFAULT (0x00)

No generation parameters provided.

OPT_RSA_PUB_EXP (0x01)

Use provided public exponent for RSA generation.

OPT_DSA_SET_GPQ (0x02)

Use provided G, P and Q parameters

Generation Parameters for RSA key, OPT_RSA_PUB_EXP option:

Bignum Public Exponent

For DSA key and OPT_DSA_SET_GPQ option, optional generation parameters are

stored in the import object, in the following format:

Bignum G parameter;

Bignum P parameter;

Bignum Q parameter;

Notes

After a key pair generation, public key can be retrieved using the ExportKey

command. It is supposed that an RSA public exponent is small enough to fit into

a single APDU, so it is directly contained in the APDU itself.

If the specified key numbers are not in use, then the operation is allowed only if

identity n.0 has already been verified.

If the specified key numbers are already in use, the operation overwrites actual

key value(s) only if current logged in identities have sufficient privileges to write

key contents, according to both private and public key ACLs. Furthermore key

overwriting could be forbidden if new key parameters don’t match in type and

size old ones, or if a previous generation operation involved only one of specified

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

keys. The exact behavior in these cases depends on the particular implementation

and is out of the scope of this document.

Return codes

The following table shows how some error codes have to be interpreted when

returned by this function. See section 2.4 for a list of all possible return codes.

Symbolic Name Description

SW_INCORRECT_P1 Private key number is invalid

SW_INCORRECT_P2 Public key number is invalid

SW_INCORRECT_ALG Key generation algorithm is incorrect

SW_OBJECT_NOT_FOUND
Import object, supposed to contain additional
key generation parameters, was not found

SW_OPERATION_NOT_ALLOWED

Operation is not allowed due to the internal
state of the Applet. This could be returned if
trying to overwrite a key with different
parameters but the Applet does not allow that.

SW_UNAUTHORIZED
One or both keys already exist and logged in
identities don’t have sufficient privileges to
overwrite them

SW_DATA_INVALID Key generation parameters are incorrect

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

2.5.2. MSCImportKey

Function Parameters:

CLA 0xB0

INS 0x32

P1 Key Number (0x00 – 0x0F)

P2 0x00

P3 Import Parameters Length

DATA Import Parameters

Definition:

This function allows the import of a key into the card by (over)-writing the

Cardlet memory. Object ID 0xFFFFFFFE needs to be initialized with a key blob

before invocation of this function so that it can retrieve the key from this object.

The exact key blob contents depend on the key’s algorithm, type and actual

import parameters. The key's number, algorithm type, and parameters are

specified by arguments P1, P2, P3, and DATA. Appropriate values for these is

specified below:

[DATA]

Import Parameters:

KeyACL ACL for the imported key;

Byte[] Additional parameters; // Optional

If KeyBlob’s Encoding is BLOB_ENC_PLAIN (0x00), there are no Additional

Parameters.

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

Notes

If the specified key number is not in use, then the operation is allowed only if

identity n.0 has already been verified.

If the specified key number is already in use, the operation overwrites actual key

values only if current logged in identities have sufficient privileges to write key

contents, according to the actual key ACLs. Furthermore key overwriting could

be forbidden if new key parameters don’t match in type and size old ones. The

exact behavior in these cases depends on the particular implementation and is out

of the scope of this document.

Return codes

The following table shows how some error codes have to be interpreted when

returned by this function. See section 2.4 for a list of all possible return codes.

Symbolic Name Description

SW_INCORRECT_P2 Key number is not valid

SW_UNAUTHORIZED
Specified key already exists and logged in
identities don’t have sufficient privileges to
overwrite it

SW_OBJECT_NOT_FOUND Import object was not found

SW_OPERATION_NOT_ALLOWED

Operation is not allowed due to the internal
state of the Applet. This could be returned if
trying to overwrite a key with different
parameters but the Applet does not allow that.

SW_DATA_INVALID Key blob is not valid.

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

2.5.3. MSCExportKey

Function Parameters:

CLA 0xB0

INS 0x34

P1 Key Number (0x00 – 0x0F)

P2 0x00

P3 Data Size

DATA Export Parameters

Definition:

This function export a single key from the card by reading it from the Cardlet

memory and creating a keyblob, according to the format defined in 2.2. The

output data is placed in the export object (ID 0xFFFFFFFF) to be read with one or

more read object commands. Key number and export parameters are specified by

arguments P1, P2, P3, and DATA. Appropriate values for these are specified

below.

[DATA]

Export Parameters:

Byte Blob Encoding;

Byte[] Additional Parameters;

See Blob Format Specification for allowed values for Blob Encoding. If Blob

Encoding is BLOB_ENC_PLAIN (0x00), then there are no Additional Parameters.

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

Note

The operation succeeds only if current logged identities have sufficient privileges

to read key contents according to the key ACL.

Return codes

The following table shows how some error codes have to be interpreted when

returned by this function. See section 2.4 for a list of all possible return codes.

Symbolic Name Description

SW_INCORRECT_P2
Key number is not valid or specified key does
not exist

SW_UNAUTHORIZED
Logged in identities don’t have sufficient
privileges to read key contents

SW_NO_MEMORY_LEFT
There is not enough memory to create the
export object.

SW_DATA_INVALID
Specified blob encoding or additional export
parameters are incorrect

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

2.5.4. MSCComputeCrypt

Function Parameters:

CLA 0xB0

INS 0x36

P1 Key Number (0x00 – 0x0F)

P2 Operation

P3 Data Length

DATA Extended Data

Definition:

This function performs the required operation on provided data, using a key on

the card. It also allows proper initialization of the card cipher with custom data, if

required by the application. Usually, this function is called 1 time for cipher

initialization (CIPHER_INIT), 0 or more times for intermediate data processing

(CIPHER_UPDATE) and 1 time for last data processing (CIPHER_FINAL).

Input and output data exchange can be arranged either directly in the command

APDU itself or, for bigger data chunks, using the I/O objects.

When encrypting or decrypting, the command outputs processed data both on

UPDATE and on FINAL operations. When signing the command outputs processed

data (the signature) only on the FINAL operation. When verifying there is never

processed data output and result is returned using the status word SW1, SW2. The

FINAL verify command must provide both last data chunk and the signature to be

verified.

Appropriate values for input parameters is specified below:

Value of Operation:

0x01 CIPHER_INIT Initialize Cipher

0x02 CIPHER_PROCESS Process more data

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

0x03 CIPHER_FINAL Process last data chunk

Extended data when Operation is CIPHER_INIT:

Byte cipher_mode;

Byte cipher_direction;

Byte data_location;

Values for Cipher Mode:

RSA or RSA_CRT key:

0x01 RSA_NO_PAD (No padding)

0x02 RSA_PAD_PKCS1

DSA key:

0x10 DSA_SHA

DES, 3DES or 3DES3 key:

0x20 DES_CBC_NOPAD

0x21 DES_ECB_NOPAD

Values for Cipher Direction:

0x01 DIR_SIGN Sign data

0x02 DIR_VERIFY Verify data

0x03 DIR_ENCRYPT Encrypt data

0x04 DIR_DECRYPT Decrypt data

Values for Data Location:

0x01 DL_APDU Initialization data in APDU;

0x02 DL_OBJECT Initialization data in input object;

Initialization data is a DataChunk (as defined below) and it either follows in

the APDU (if Data Location is DL_APDU) or is contained in the input object with

ID 0xFFFFFFFE (if Data Location is DL_OBJECT). In order to provide no

initialization data the application must supply a DataChunk with the Size field set

to 0.

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

Extended Data when Operation is CIPHER_PROCESS

Byte Data Location

DataChunk Input Data // If Location == APDU

Values for Data Location:

0x01 DL_APDU Input data contained in APDU;

Out data (if any) is returned in APDU

0x02 DL_OBJECT Input data in object 0xFFFFFFFE;

Out data (if any) in object 0xFFFFFFFF

Extended Data when Operation is CIPHER_FINAL and direction is not

DIR_SIGN:

Byte Data Location

DataChunk Input Data // If Location == APDU

When operation is CIPHER_FINAL and direction is DIR_SIGN, last data chunk must

be followed by the signature data to be verified.

Extended Data when Operation is CIPHER_FINAL and direction is not

DIR_SIGN:

Byte Data Location

DataChunk Input Data // If Location == APDU

DataChunk Signature Data // If Location == APDU

Data must be provided and is returned in the following format:

DataChunk:

Short Size;

Byte[] Data; // exactly Size bytes of data;

Returns

If processed data must be returned to the host application, it is either placed into

an APDU or into the export object (with ID 0xFFFFFFFF), in the format defined

above as DataChunk:

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

Return codes

The following table shows how some error codes have to be interpreted when

returned by this function. These are to be considered in addition to the general

ones in 0.

Symbolic Name Description

SW_INCORRECT_P1
Key number is not valid or specified key does
not exist

SW_INCORRECT_P2 Specified operation is not valid

SW_UNAUTHORIZED
Logged in identities don’t have sufficient
privileges to use the key

SW_NO_MEMORY_LEFT
There is not enough memory to complete the
operation

SW_DATA_INVALID
Data supplied either in the APDU itself, or in
the input object, is not valid.

SW_SIGNATURE_INVALID Signature verify operation failed

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

2.5.5. MSCExtAuthenticate

Function Parameters:

CLA 0xB0

INS 0x38

P1 Key Number (0x00 – 0x05)

P2 0x00

P3 Data Length

DATA Extended Data

Definition:

This function performs the last step in a challenge/response cryptographic

protocol that allows strong authentication of the host application to the card. A

call to this function must occur after a call to MSCGetChallenge. The host should

encrypt the challenge with the appropriate key and pass the encrypted data to this

function.

In DECRYPT mode, this function uses the key specified in P1 to decrypt the

challenge and then compares obtained data with original random data generated

by MSCGetChallenge. In VERIFY mode, this function uses the public key

specified in P1 to verify that the provided Encrypted Data is a valid digital

signature for the original random data generated by MSCGetChallenge.

An exact match grants host authentication and the strong identity corresponding

to the key number5 is logged in. The try counter for the key is also reset.

A bad match result in decreasing the try counter for the key and, if it goes to zero,

the key is blocked.

Appropriate values for input parameters are specified below:

5 Refer to section 1.2 for details

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

Extended Data when Cipher Direction is DIR_DECRYPT:

Byte Cipher Mode

Byte Cipher Direction

Byte Data Location

DataChunk Input Data // If Location == APDU

Extended Data when Cipher Direction is DIR_VERIFY:

Byte Cipher Mode

Byte Cipher Direction

Byte Data Location

DataChunk Input Data // If Location == APDU

DataChunk Signature Data // If Location == APDU

Values for Data Location:

0x01 DL_APDU Input data contained in APDU;

0x02 DL_OBJECT Input data in input object 0xFFFFFFFE;

For Cipher Mode and Cipher Direction, refer to the ComputeCrypt command.

Notes

• With RSA keys RSA_NO_PAD mode is not allowed for external authentication.

• Only VERIFY and DECRYPT directions are allowed for external authentication.

• Referenced key must be either a symmetric key or a public asymmetric one.

• Only keys with numbers from 0 to 5 can be used for external authentication.

Return codes

The following table shows how some error codes have to be interpreted when

returned by this function. See section 2.4 for a list of all possible return codes.

Symbolic Name Description

SW_INCORRECT_P1
Key number is not valid or specified key does
not exist

SW_UNAUTHORIZED Logged in identities don’t have sufficient
i il h k

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

privileges to use the key

SW_NO_MEMORY_LEFT
There is not enough memory to complete the
operation

SW_DATA_INVALID
Data supplied either in the APDU itself, or in
the input object, is not valid.

SW_IDENTITY_BLOCKED
Authentication was not possible because
specified identity is blocked.

SW_AUTH_FAILED
Authentication failed. Multiple failures of this
type cause the identity to block.

SW_OBJECT_NOT_FOUND
Specified operation requires input data from
the input object, but it does not exist.

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

2.5.6. MSCListKeys

Function Parameters:

CLA 0xB0

INS 0x3A

P1 Sequence Option

P2 0x00

P3 0x0B

DATA

Definition:

This function returns a list of current keys and their properties including id, type,

size, partner, and access control. This function is initially called with the reset

sequence set for sequence type. The function only returns one object id at a time

and must be called in repetition until SW_SUCCESS is returned.

Values for Sequence Option:

0x00 Reset sequence and get first entry

0x01 Get next entry

Notes:

The data will be trailed with SW_SUCCESS. When the list has no more entries just

SW_SUCCESS will be returned.

Reset sequence can be called at any time to reset the key pointer to the first in the

list.

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

Returned data

Returned data if a key was found:

Byte Key Number

Byte Key Type

Byte Key Partner

Short Key Size

KeyACL ACL for this key

Short Status Word

Key
Type

Key
Size

Key
Num

Key
Partn

Key ACL Status
WordR R W W U U

If the key is part of a key pair and the other key is also stored on the card, the field

Key Partner can contain the key number of the other key. This information is

optional, and the special value 0xFF means that it is not available.

Return codes

The following table shows how some error codes have to be interpreted when

returned by this function. See section 2.4 for a list of all possible return codes.

Symbolic Name Description

SW_INCORRECT_P1 Sequence option is not valid

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

2.5.7. MSCCreatePIN

Function Parameters:

CLA 0xB0

INS 0x40

P1 PIN Number

P2 PIN Maximum attempts

P3 Data Length

DATA PIN creation parameters

Definition:

This function creates a PIN with parameters specified by the P1, P2 and DATA

values. P2 specifies the maximum number of consecutive unsuccessful

verifications before the PIN blocks.

PIN Number 0x01-0x07

PIN creation parameters:

Byte PIN Length

Byte[] PIN value

Byte Unblock code length

Byte[] Unblock code value

PIN Value

. . .

. . .

PIN
Size Unblock Code Value

. . .

. . .

U.C.
Size

Notes

Command succeeds and a new PIN code is initialized only if identity n.0 is

logged in and specified PIN number is actually unused.

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

Right after a PIN creation command the new PIN identity is not logged in.

PIN number 0 cannot be created as it is reserved as a pre-defined PIN.

Return codes

The following table shows how some error codes have to be interpreted when

returned by this function. See section 2.4 for a list of all possible return codes.

Symbolic Name Description

SW_UNAUTHORIZED Identity n.0 is not actually logged in

SW_INCORRECT_P1
Specified PIN number is invalid or is already
in use

SW_DATA_INVALID
Provided PIN or unblock code data is not
valid

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

2.5.8. MSCVerifyPIN

Function Parameters:

CLA 0xB0

INS 0x42

P1 PIN Number

P2 0x00

P3 Data Length

DATA PIN Value

Definition:

This function verifies a PIN number sent by the DATA portion. The length of

this PIN is specified by the value contained in P3.

Notes

Multiple consecutive unsuccessful PIN verifications will block the PIN. If a PIN

blocks, then an UnblockPIN command can be issued.

Return codes

The following table shows how some error codes have to be interpreted when

returned by this function. See section 2.4 for a list of all possible return codes.

Symbolic Name Description

SW_AUTH_FAILED
PIN verification failed. Multiple verification
failures cause the PIN to block

SW_INCORRECT_P1
Specified PIN number is invalid or PIN code
does not exist

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

SW_IDENTITY_BLOCKED Specified PIN is actually blocked

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

2.5.9. MSCChangePIN

Function Parameters:

CLA 0xB0

INS 0x44

P1 PIN Number

P2 0x00

P3 Data Length

DATA Pin Change Parameters

Definition:

This function changes a PIN code. The DATA portion contains both the old and

the new PIN codes.

PIN creation parameters:

Byte Old PIN length

Byte[] Old PIN value

Byte New PIN length

Byte[] New PIN value

Old PIN Value

. . .

. . .

PIN
Size New PIN Value

. . .

. . .

PIN
Size

Notes

Right after a PIN change command, the corresponding PIN identity is not logged

in.

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

Return codes

The following table shows how some error codes have to be interpreted when

returned by this function. See section 2.4 for a list of all possible return codes.

Symbolic Name Description

SW_AUTH_FAILED
PIN verification failed. Multiple verification
failures cause the PIN to block

SW_INCORRECT_P1
Specified PIN number is invalid or PIN code
does not exist

SW_IDENTITY_BLOCKED
Specified PIN is actually blocked and cannot
be changed

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

2.5.10. MSCUnblockPIN

Function Parameters:

CLA 0xB0

INS 0x46

P1 PIN Number

P2 0x00

P3 Data Length

DATA PIN Number Value

Definition:

This function unblocks a PIN number using the unblock code specified in the

DATA portion. The P3 byte specifies the unblock code length.

Note:

After 3 multiple consecutive unsuccessful unblock tries, it is not possible to

unblock the PIN neither to use it.

Return codes

The following table shows how some error codes have to be interpreted when

returned by this function. See section 2.4 for a list of all possible return codes.

Symbolic Name Description

SW_AUTH_FAILED
Unblock code verification failed. Multiple
verification failures cause the unblock code to
block

SW_INCORRECT_P1 Specified PIN number is invalid or PIN code
d i

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

does not exist

SW_IDENTITY_BLOCKED

Specified unblocked code is actually blocked
and cannot be changed anymore. If the
associated PIN is also blocked, it will not be
possible anymore to verify it or to issue any
operation protected by it

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

2.5.11. MSCListPINs

Function Parameters:

CLA 0xB0

INS 0x48

P1 0x00

P2 0x00

P3 0x02

Definition:

This function returns a 2 byte bit mask of the available PINs that are currently in

use. Each set bit corresponds to an active PIN, according to the following table.

Least significant byte:

Bit PIN Number Bitmask Value
1 Pin #1 0x01
2 Pin #2 0x02
3 Pin #3 0x04
… … …

Most significant byte is RFU.

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

2.5.12. MSCCreateObject

Function Parameters:

CLA 0xB0

INS 0x5A

P1 0x00

P2 0x00

P3 0x0E

DATA Object Parameters

[DATA]

Object Parameters

Long Object ID;

Long Object Size;

ObjectACL ObjectACL;

Object ID Object Size

Object ACL

R R W W D D

Definition:

This function creates an object that will be identified by the provided object ID.

The object’s space and name will be allocated until deleted using

MSCDeleteObject.

The object will be allocated upon the card's memory heap. For object

lookup purposes, the Applet may allow up to a fixed amount of objects to reside

on the card. The exact amount is beyond the scope of this document.

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

After creation, an object has “random” contents. Applications cannot rely on any

particular contents right after an object creation.

Notes:

Object creation is only allowed if the object ID is available and logged in

identity(-ies) have sufficient privileges to create objects.

Return codes

The following table shows how some error codes have to be interpreted when

returned by this function. See section 2.4 for a list of all possible return codes.

Symbolic Name Description

SW_UNAUTHORIZED PIN number 0 has not been verified yet

SW_OBJECT_EXISTS Specified object ID is already in use

SW_NO_MEMORY_LEFT
There is not enough free space on the card’s
memory for the new object

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

2.5.13. MSCDeleteObject

Function Parameters:

CLA 0xB0

INS 0x52

P1 0x00

P2 Zero Flag

P3 0x04

DATA

[DATA]

Long Object ID

Definition:

This function deletes the object identified by the provided object ID. The object’s

space and name will be removed from the heap and made available for other

objects.

The zero flag denotes whether the object’s memory should be zeroed after

deletion. This kind of deletion is recommended if object was storing

sensitive data.

Parameters:

Zero Flag

0x01 Write zeros to object memory before release

0x00 Memory zeroing not required

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

Notes

Object will be effectively deleted only if logged in identity(ies) have sufficient

privileges for the operation, according to the object’s ACL.

Not setting the zero flag doesn’t guarantee future recovery of object data.

Return codes

The following table shows how some error codes have to be interpreted when

returned by this function. See section 2.4 for a list of all possible return codes.

Symbolic Name Description

SW_UNAUTHORIZED
Logged in identities don’t have sufficient
privileges to delete the specified object

SW_OBJECT_NOT_FOUND Specified object does not exist

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

2.5.14. MSCWriteObject

Function Parameters:

CLA 0xB0

INS 0x54

P1 0x00

P2 0x00

P3 Data Size + 9

DATA Parameters

[DATA]

Parameters:

Long Object ID

Long Offset

Byte Data Size

Byte[] Object Data

Object ID Offset

Object Data

. . .

. . .

Data
Size

Definition:

This function (over-)writes data to an object that has been previously created with

MSCCreateObject. Provided Object Data is stored starting from the byte specified

by the Offset parameter. The size of provided object data must be exactly (Data

Length – 8) bytes. Provided offset value plus the size of provided Object Data

must not exceed object size.

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

Up to 246 bytes can be transferred with a single APDU. If more bytes need to be

transferred, then multiple WriteObject commands must be used with different

offsets.

Notes:

Object data will be effectively written only if logged in identity(ies) have

sufficient privileges for the operation, according to the object’s ACL.

Return codes

The following table shows how some error codes have to be interpreted when

returned by this function. See section 2.4 for a list of all possible return codes.

Symbolic Name Description

SW_UNAUTHORIZED
Logged in identities don’t have sufficient
privileges to overwrite object’s contents

SW_OBJECT_NOT_FOUND Specified object does not exist

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

2.5.15. MSCReadObject

Function Parameters:

CLA 0xB0

INS 0x56

P1 0x00

P2 0x00

P3 0x09

DATA Reading Parameters

[DATA]

Reading Parameters

Long Object ID

Long Offset

Byte Data Size

Object ID Offset
Data
Size

Definition:

This function reads data from an object that has been previously created with

MSCCreateObject. Object data is read starting from the byte specified by the

Offset parameter.

Up to 255 bytes can be transferred with a single APDU. If more bytes need to be

transferred, then multiple ReadObject commands must be used with different

offsets.

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

Notes

Object data will be effectively read only if logged in identity(ies) have sufficient

privileges for the operation, according to the object’s ACL.

Return codes

The following table shows how some error codes have to be interpreted when

returned by this function. See section 2.4 for a list of all possible return codes.

Symbolic Name Description

SW_UNAUTHORIZED
Logged in identities don’t have sufficient
privileges to read object’s contents

SW_OBJECT_NOT_FOUND Specified object does not exist

Returned data

[DATA]

Byte[] readData;

Short Status Word;

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

2.5.16. MSCListObjects

Function Parameters:

CLA 0xB0

INS 0x58

P1 Sequence Option

P2 0x00

P3 0x0E

DATA

Definition:

This function returns a list of current objects and their properties including id,

size, and access control. This function must be initially called with the reset

option. The function only returns one object information at a time and must be

called in repetition until SW_SUCCESS is returned with no further data.

Applications cannot rely on any special ordering of the sequence of returned

objects.

Values for Sequence Option:

0x00 Reset sequence and get first entry

0x01 Get next entry

Notes:

The data will be trailed with SW_SUCCESS. When the list has no more entries

just SW_SUCCESS will be returned and no data.

Reset sequence can be called at any time to reset the file pointer to the first in the

list.

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

Returned data

Data returned if an object was found:

Object ID Object Size

Status
Word

Object ACL

R R W W D D

When the Reset Sequence option is selected, the first entry is returned.

If last object’s information was already retrieved, then no data and a status word

of SW_SUCCESS are returned.

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

2.5.17. MSCLogoutAll

Function Parameters:

CLA 0xB0

INS 0x60

P1 0x00

P2 0x00

P3 0x02

DATA[0] 0x00

DATA[1] 0x00

Definition:

This function logs out any identity so that the card’s state is in a non-authenticated

state. DATA[0] and DATA[1] alleviates ambiguity by not using a ISO Case 1

transaction.

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

2.5.18. MSCGetChallenge

Function Parameters:

CLA 0xB0

INS 0x62

P1 0x00

P2 Output Data Location

P3 Data length

DATA

Short Random Data Size

Short Seed Length

Byte[] Seed Data // Only if Seed Length > 0

Returns:

DATA Random Number

Definition:

This function return random data generated on the card with a length specified by

the Random Data Size parameter. Data is either returned with a GET_RESPONSE

APDU or is placed in the output object 0xFFFFFFFF, according to the selected

Output Data Location. After returned random data has been retrieved, an

External Authenticate command should follow. This command also allows

specifying optional input data to be fed into the random number generator. A zero

value of the Seed Length parameter specifies no seeding data.

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

Values for Data Location:

0x01 DL_APDU Input data contained in APDU;

Out data (if any) is returned in APDU

0x02 DL_OBJECT Input data in object 0xFFFFFFFE;

Out data (if any) in object 0xFFFFFFFF

Returns

Returned data if Data Location is DL_APDU:

Object Data

. . .

. . .

Status
Word

If Data Location is DL_OBJECT only the status word is returned.

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

2.5.19. MSCGetStatus

Function Parameters:

CLA 0x00

INS 0x3C

P1 0x00

P2 0x00

P3 Size of expected data

Definition:

This function retrieves general information about the Applet running on the smart

card, and useful information about the status of current session, such as object

memory information, currently used number of keys and PIN codes, currently

logged in identities, etc…

Returns

Returned data has the following format:

Byte Card Edge Major Version

Byte Card Edge Minor Version

Byte Software Major Version

Byte Software Minor Version

Long Total Object memory

Long Free Object Memory

Byte Number of used PINs

Byte Number of used Keys

Short Currently Logged in Identities

Card Edge Version reports the supported Card Edge command set version.

Software Version reports the version of the Java Applet or other software running

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

on the card that implements Card Edge command set. Currently Logged Identities

is a word whose bits are to be interpreted according to the following table:

Bit 16 (M.S. Bit) Reserved identity #2 currently logged in

Bit 15 Reserved identity #1 currently logged in

...

Bit 10 Strong identity #1 currently logged in

Bit 9 Strong identity #0 currently logged in

Bit 8 PIN identity #7 currently logged in

...

Bit 2 PIN identity #1 currently logged in

Bit 1 (L.S. Bit) PIN identity #0 currently logged in

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

2.5.20. ISOVerify

Function Parameters:

CLA 0x00

INS 0x20

P1 0x00

P2 PIN Number

P3 Data Length

DATA PIN Value

Definition:

This function verifies a PIN number sent by the DATA portion by a command

supported by ISO 7816-4. The purpose of this command is to support readers

with PIN pads which automatically send ISO Verify PIN commands to the card.

The length of this PIN is specified by the value contained in P3.

Notes

Multiple consecutive unsuccessful PIN verifications will block the PIN. If a PIN

blocks, then an UnblockPIN command can be issued.

Return codes

The following table shows how some error codes have to be interpreted when

returned by this function. See section 2.4 for a list of all possible return codes.

Symbolic Name Description

SW_AUTH_FAILED
PIN verification failed. Multiple verification
failures cause the PIN to block

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

SW_INCORRECT_P1
Specified PIN number is invalid or PIN code
does not exist

SW_IDENTITY_BLOCKED Specified PIN is actually blocked

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

Section 3. Glossary

APDU Application Protocol Data Unit

Applet A Java application residing on a JavaCard compliant card

Applet Instance An instance of a Java application residing on a JavaCard compliant card

Applet Selection
The process of selecting one of the Applet Instances residing onto a JavaCard
compliant smartcard for processing further APDU commands.

Blocked PIN
A PIN whose verification has been unsuccessfully tried multiple consecutive
times. Verification of a blocked PIN Code is not possible until unblocking.

External
Authentication

A challenge-response cryptographic protocol by which an Applet Instance
authenticates a host application.

Key Blob A byte sequence encoding a cryptographic key

Key Number A number from 0 to 7 that references a key on the Applet

Identity Number
A number from 0 to 15 referencing one of the 16 methods available to the
host application to authenticate to an Applet Instance

Input Object
Object with ID 0xFFFFFFFE. It is used to store input data for commands that
require large inputs.

Java Card ™
Java standard from Sun for Java enabled smart card interoperability. This
document refers to the version 2.1.1 of the standard

Output Object
Object with ID 0xFFFFFFFF. It is used to store output data for commands
that provide large outputs.

PIN Code (or PIN)
A byte sequence. Usually a PIN code is an ASCII character string. An Applet
Instance can store multiple PIN codes and use them to authenticate a user

PIN Code
Verification

The process by which an Applet Instance authenticates a host application
comparing the host provided PIN Code with one of the on board stored ones.

PIN Number A number from 0 to 7 that references a PIN code on the Applet

PIN Unblock Code A code that, when entered successfully, unblocks a blocked PIN

MUSCLE Cryptographic Card Edge Definition

cucinotta@sssup.it corcoran@linuxnet.com

Status Word (SW)
A two byte code as defined in ISO-7816 as to the status of a smartcard
command

T0/T1 Protocols Low level protocols used to communicate to a smartcard.

