
Interoperability Specification for ICCs and
Personal Computer Systems

Part 3. Requirements for PC-Connected Interface Devices
Bull CP8, a Bull Company

Gemplus SA

Hewlett-Packard Company

IBM Corporation

Microsoft Corporation

Schlumberger SA

Siemens Nixdorf Informationssysteme AG

Sun Microsystems Inc.

Toshiba Corporation

VeriFone Inc.

Revision 1.0-
December 1997

Copyright © 1996, 1997, Bull CP8, Gemplus, Hewlett-Packard, IBM, Microsoft, Schlumberger, Siemens Nixdorf,
Sun Microsystems, Toshiba and VeriFone.

All rights reserved.

INTELLECTUAL PROPERTY DISCLAIMER
THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER INCLUDING ANY
WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.
NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED OR INTENDED HEREBY.
BULL CP8, GEMPLUS, HEWLETT-PACKARD, IBM, MICROSOFT, SCHLUMBERGER, SIEMENS NIXDORF,
SUN MICROSYSTEMS, TOSHIBA AND VERIFONE DISCLAIM ALL LIABILITY, INCLUDING LIABILITY
FOR INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION OF
INFORMATION IN THIS SPECIFICATION. BULL CP8, GEMPLUS, HEWLETT PACKARD, IBM,
MICROSOFT, SCHLUMBERGER, SIEMENS NIXDORF, SUN MICROSYSTEMS, TOSHIBA AND VERIFONE
DO NOT WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE SUCH
RIGHTS.

Windows and Windows NT are trademarks and Microsoft and Win32 are registered trademarks of Microsoft Corporation.
PS/2 is a registered trademark of IBM Corp. JAVA is a registered trademark of Sun Microsystems, Inc. All other product
names are trademarks, registered trademarks, or servicemarks of their respective owners.

Interoperability Specification for ICCs and Personal Computer Systems December 1997

Contents

1. SCOPE.. 1

2. IFD SUBSYSTEM COMPONENTS..2

2.1 Interface Device... 2

2.2 I/O Channel..2

2.3 IFD Handler...3

3. FUNCTIONALITY REQUIREMENTS..4

3.1 Mandatory Functionality..4
3.1.1 Operational characteristics... 4
3.1.2 Enumeration of Device Capabilities.. 4
3.1.3 ICC Events... 8
3.1.4 ICC Interface Management.. 8
3.1.5. Protocol Support..9

3.1.5.1 Protocol Negotiation... 10
3.1.5.2 T=0 Protocol Support.. 11
3.1.5.3 T=1 Protocol Support.. 12
3.1.5.4 Synchronous Protocols...13

3.1.6 Channel mechanism support.. 13

3.2 Optional Functionality..13
3.2.1 ICC Power Management.. 13
3.2.2 Mechanical Characteristics.. 13
3.2.3 Security Assurance Devices... 13
3.2.4 Vendor-Specific Features..14

0APPENDIX A: IFD HANDLER INTERFACE REFERENCE.....................................15

3.3 Syntax... 15

3.4 Administrative Services.. 15
3.4.1 Retrieving an IFD Capability... 15
3.4.2 Setting an IFD Capability...16
3.4.3 Protocol Information and Negotiation..16
3.4.4 ICC Power Management.. 17
3.4.5 Mechanical Characteristics.. 17

3.5 Communication Services.. 18
3.5.1 Data Exchange with the ICC.. 18
3.5.2 ICC Insertion and Removal..19

 1996, 1997 – Bull CP8, Gemplus, Hewlett-Packard, IBM, Microsoft, Schlumberger, Siemens Nixdorf, Sun
Microsystems, Toshiba, VeriFone. All Rights Reserved. Page i

Interoperability Specification for ICCs and Personal Computer Systems December 1997

 1996, 1997 – Bull CP8, Gemplus, Hewlett-Packard, IBM, Microsoft, Schlumberger, Siemens Nixdorf, Sun
Microsystems, Toshiba, VeriFone. All Rights Reserved. Page ii

1. Scope

This document discusses requirements for Interface Devices compliant with the Interoperability Specification
for ICCs and Personal Computer Systems. For the purposes of this discussion, Interface Devices are PC-
connected peripherals designed to interface to ISO/IEC 7816–compatible ICCs. Such devices are also
commonly called ICC smart card “Readers” or “Terminals”. However, other specifications may describe IFD
or ICC Terminal functionality that differs in scope from the Interface Devices requirements herein.

In this document, the term “IFD Subsystem” shall be used to denote a PC peripheral subsystem consisting of:
? An Interface Device (IFD), which provides the ICC interface.
? An I/O channel managed by an I/O device driver on the PC side.
? PC-hosted IFD handler software, which interfaces with the upper layer of the overall Interoperability

Specification for ICCs and Personal Computer Systems architecture and the low-level I/O device
drivers, as depicted in Figure 1-1.

ICC-Aware Application

ICC Service Provider

ICC Resource Manager

IFD
Handler

IFD
Handler

IFD
Handler

Interface
Device

ICC

Interface
Device

ICC

Interface
Device

ICC

IFD Handler Interface : Scope of this Part 3

Interface between IFD and ICC : Scope of Part 2

I/O Channel

I/O Device
Driver

I/O Device
Driver

I/O Device
Driver IFD

Subsystem
PS/2 RS 232 USB

Figure 1.1. IFD Subsytem components and interfaces with other components

A vendor must fully implement the IFD Subsystem. In doing so, they may create the entire subsystem or take
advantage of standard device drivers, I/O channels, and/or default IFD Handlers, which may be provided by
other vendors. In order to claim compliance however, they must insure that the entire subsystem functions in
accordance with this specification. In particular, this means they must support:

? An ICC interface as described in Part 2, “Interface Requirements for Compatible IC Cards and
Interface Devices.”

? A PC software interface and associated functionality, as described in this document.

This document identifies specific requirements for compliant Interface Devices. Reference designs for specific
types of Interface Devices, and especially a PS/2 keyboard–based compliant Interface Device, can be found in
Part 4 of these specifications “Interface Device Design Considerations and reference design information”.

2. IFD Subsystem Components

The IFD Subsystem is a PC peripheral subsystem consisting of the components identified in Section 1. It is
the intent of this specification to define requirements that are supportable across a wide variety of Interface
Device designs and that encourage continued innovation by Interface Device vendors. In order to achieve this,
the IFD Subsystem employs a layered architecture, which allows for design variations and supports a variety
of data communications interfaces between the Interface Device and PC. Requirements on compliant devices
are specified at the interface to the ICC and at the programming interface (IFD Handler Interface) exposed on
the PC.

2.1 Interface Device

The Interface Device is a PC peripheral that:
? Interfaces to an ICC as described in Part 2, “Interface Requirements for Compatible IC Cards and

Interface Devices.”
? Supports bidirectional data communications between an ICC and PC.
? Incorporates functionality required to support the interface exposed by the IFD Handler

There are limited physical design requirements imposed on compliant Interface Devices, primarily those
dictated by compatibility with the ICC physical interface.

In the interest of reliability, it is strongly recommended that these devices employ:
? A landing card or landing contact design.
? A microswitch for card detection.

The Interface Device should employ a tamper-evident design if it incorporates any of the optional security
assurance features discussed in chapter 3.2.3. These features should provide reasonable assurance to the end
user that attempts to access or modify the Interface Device are detectable. See ISO 13491:1995 for
information regarding tamper-evident devices.

2.2 I/O Channel

This specification is compatible with IFD Subsystems using any available PC I/O channel to communicate
with the Interface Device. It is the responsibility of the vendor to create an IFD Handler and device drivers, as
necessary to insure that the ICC Service Providers can communicate with the ICC through the Interface
Device. It is also the responsibility of the Interface Device vendor to provide appropriate management services
and error handling related to the PC I/O channel to insure reliable, error free communication.

The following indicates possible design options and discusses the primary strengths and/or weaknesses of the
associated PC I/O channel:

? PS/2 Keyboard Integrated Interface Device. Can be implemented at very low incremental cost
beyond basic keyboard. This is likely to be the preferred near term solution for desktop PCs due
to the ubiquitous availability of PS/2® keyboard interfaces, the efficient use of desktop space,
and the fact such designs don’t use other, scarce, I/O resources. Drawbacks include the
maximum data rate limit of 9600 bps and potential impact in responsiveness to keyboard input.

? Serial Port (RS-232C) interface. It’s possible to build low-cost Interface Devices using standard
serial ports. Such devices can easily support multiple data rates, including support for rates in
excess of 30 kbps, and are suitable for use with desktop and laptop PCs. Biggest drawback is
reliance on serial port, which is a scarce resource on most PCs.

? Interface Devices employing custom interface boards. Such devices offer the designer the greatest
flexibility, but solutions are fairly high cost and space for add-on interface boards is a scarce
commodity on many PCs.

? Parallel Port interfaces. It’s possible to build such devices at relatively low cost, but not all PCs
include parallel I/O ports and when present these tend to be an overloaded resource. Design
complications include de-facto requirements to support pass-through for printers, and the need to
convert between the ICC serial interface and a parallel interface.

? PC Card–based Interface Devices. Such devices are moderately high cost, but may be the best
approach to addressing the needs of existing laptop PCs. Such devices offer growth potential to
very high effective data rates, but the design makes ICC insertion/removal somewhat difficult
and it is difficult to support any of the optional Security Assurance features identified in Chapter
3.2.3.

? SCSI interfaces. SCSI- based Interface Devices can support a variety of effective data rates. This may
also be an attractive option in situations where there is a need to support multiple Interface
Devices from a single PC. The downside is the fairly high cost associated with SCSI-compatible
devices.

? USB interface. Efforts are underway to establish USB as a standard for connection of peripheral
devices to the PC. It offers a great deal of flexibility, a clean model for handling of multiple
devices, and supports data rates up to 10 Mbps. The major drawback is the absence of USB
interfaces on most of the PC’s built before 1997. It is believed that USB-based Interface Devices
will eventually supplant PS/2 Keyboard and serial port Interface Devices as the preferred
designs.

2.3 IFD Handler

The IFD Handler is software running on the PC that implements a standard, hardware-independent and I/O
channel–independent interface into the IFD subsystem for PC-based software. It is the responsibility of this
IFD Handler to interface to the I/O channel used by the Interface Device, either via standard device drivers or
by implementing appropriate functionality. It is also required to map Interface Device functionality onto these
interfaces.

Depending on the vendor-implemented Interface Device functionality, the complexity of the IFD Handler can
vary dramatically. For example, given an Interface Device with limited intelligence and support for only the
ISO/IEC 7816 physical data link layer, the IFD Handler will need to implement the T=0 and T=1 data link
layers, provide associated error handling, and so on. In contrast, a vendor could implement a sophisticated
Interface Device that internally supports the T=0 and T=1 data link layers. In this case, the IFD Handler will
be significantly simpler in design.

These specifications do not mandate a specific implementation for IFD Handlers. Compatible IFD Handlers
may be implemented as statically linked libraries, dynamically linked libraries (sometimes called shared
libraries), or device drivers. Recommended implementations for a specific environment should be specified by

the Operating System vendor. This allows each OS vendor to optimize the implementation in consideration of
the OS services, device driver model, and supported hardware.

3. Functionality Requirements

This Section presents information on functional requirements for the IFD Subsystem visible at the PC-
software interface implemented by the IFD Handler. It discusses both mandatory and optional functionality.

3.1 Mandatory Functionality

The following subsections identify mandatory functionality for compliant IFD subsystems.

3.1.1 Operational characteristics

The IFD Handler shall present a uniform set of services to the ICC Service Provider software. An IFD Handler
shall only support a single, active, logical connection between a PC-based application and the associated
Interface Device at any given time. That is, the IFD Handler is not required to support multiple active
connections to PC software programs nor is it required to provide any services related to the management of
multiple logical connections and associated command streams.

This does not preclude use of the “session” management features defined in ISO/IEC 7816 such as the
“channel” mechanisms defined in 7816-4 or the Node Addressing functionality associated with the T=1
protocol. However, implementation of these features is the responsibility of the ICC and associated ICC
Service Provider(s).

From the perspective of PC-based software, the IFD Handler implements a number of administrative and
asynchronous communications services. The administrative functions should appear to act as simple function
calls and may block the calling application until completed. The communications functions shall be
implemented such that the calling process may initiate a command and then continue independent processing
while the command is transmitted to the ICC and ICC response retrieved. The IFD Handler shall then notify
the calling process using an appropriate inter-process signaling mechanism. The specific signaling mechanism
to be implemented is OS dependent and is beyond the scope of this specification.

It is acceptable to implement an IFD Handler that supports multiple Interface Devices. This may be desirable
to improve efficiency and/or reduce vendor development and support costs. In the event an IFD Handler
supports multiple Interface Devices, it must present an independent logical connection to the calling ICC
Service Provider(s) for each Device. In addition, it must support the ability for the calling software to
determine which physical Device is associated with a given logical connection.

3.1.2 Enumeration of Device Capabilities

The IFD Handler shall provide an interface that supports enumeration of the functionality, both mandatory and
optional, that is implemented by the IFD subsystem. An ICC Service Provider shall be able to query this
interface at any time. Information will be returned using a TLV (tag-length-value) structure. At a minimum,
the following information shall be retrievable.

Table 3-1. Codes for Enumerating Interface Device Capabilities

Information Class Data Element TAG Max.
Length

Data Encoding

Vendor
• Vendor Name 0x0100 32 bytes ASCII string
• Vendor-specified

IFD Type
0x0101 32 bytes ASCII string

• Vendor-specified
IFD Version
number

0x0102 4 bytes DWORD encoded as
0XMMmmbbbb where:
• MM = major version
• mm = minor version
• bbbb = build number

• • IFD Serial
Number

0x0103 32 bytes ASCII string

Communications
• Channel ID 0x0110 4 bytes DWORD encoded as

0xDDDDCCCC where:
• DDDD = data channel type
• CCCC = channel number

The following encodings are
defined for DDDD:

• 0x01 serial I/O; CCCC is
port number.

• 0x02 parallel I/O; CCCC is
port number.

• 0x04 PS/2 keyboard port;
CCCC is zero.

• 0x08 SCSI; CCCC is SCSI
ID number.

• 0x10 IDE; CCCC is device
number.

• 0x20 USB; CCCC is device
number.

• 0xFy vendor-defined
interface with y in the
range 0 through 15;
CCCC is vendor
defined.

• Protocol (see
Part 2 of this
specfication)

• Asynchronous
Protocol
Types
supported

0x0120 4 bytes DWORD encoded as
0x0RRRPPPP where:
• RRR is RFU and should be

0x000.
• PPPP encodes the supported

protocol types. A ‘1’ in a
given bit position
indicates support for the
associated ISO protocol.

Example: 0x00000003

Information Class Data Element TAG Max.
Length

Data Encoding

indicates support for T=0 and
T=1. This is the only
compliant value that may be
returned by devices at this
time. All other values (T=2,
T=14, T=15, and so on, are
outside of this specification,
and must be handled by
vendor-supplied drivers).

• • Default CLK 0x0121 4 bytes Default ICC CLK frequency in
KHz encoded as little endian
integer value. Example: 3.58
MHz is encoded as the integer
value 3580.

• Max CLK 0x0122 4 bytes Maximum supported ICC CLK
frequency in KHz encoded as
little endian integer value.

• Default Data
Rate

0x0123 4 bytes Default ICC I/O data rate in bps
encoded as little endian integer.

• Max Data Rate 0x0124 4 bytes Maximum supported ICC I/O
date rate in bps.

• Max IFSD 0x0125 4 bytes DWORD indicating maximum
IFSD supported by IFD. At least
32,254 is recommended.

• Synchronous
Protocol
Types
supported

0x0126 4 bytes DWORD encoded as
0x4RRRPPPP where:
• RRR is RFU and should be

0x000.
• PPPP encodes the supported

protocol types. A ‘1’ in a
given bit position
indicates support for the
associated protocol.

0x0001
indicates

support for 2-wire
protocol.
0x0002

indicates
support for 3-wire
protocol.
0x0004

indicates
support for I²C-Bus
protocol.

All other values are outside
of this specification, and
must be handled by vendor-
supplied drivers.

• Power
Management

• Power Mgt 0x0131 4 bytes If 0, device does not support

Information Class Data Element TAG Max.
Length

Data Encoding

Supported power down while ICC inserted.
If non-zero, device does support
it.

Security Assurance
features

• User to Card
Authenticati
on Devices

0x0140 4 bytes DWORD that is the result of a
bitwise OR operation performed
on the following values:
• 0x00000000 No devices
• 0x00000001 RFU
• 0x00000002 Numeric (that

is, PIN) pad
• 0x00000004 Keyboard
• 0x00000008 Fingerprint

scanner
• 0x00000010 Retinal scanner
• 0x00000020 Image scanner
• 0x00000040 Voice print

scanner
• 0x00000080 Display device
• 0x0000dd00 dd is vendor

selected for vendor-
defined device

• • User
Authenticati
on Input
Device

0x0142 4 bytes DWORD that is the result of a
bitwise OR operation performed
on the following values:
• 0x00000000 No devices
• 0x00000001 RFU
• 0x00000002 Numeric (that

is, PIN) pad
• 0x00000004 Keyboard
• 0x00000008 Fingerprint

scanner
• 0x00000010 Retinal scanner
• 0x00000020 Image scanner
• 0x00000040 Voice print

scanner
• 0x00000080 Display device
• 0x0000dd00 dd in the range

0x01 to 0x40 is vendor
selected for vendor-
defined device

• 0x00008000 Used to indicate
that encrypted input is
supported

• Mechanical
Characteristics

• Mechanical
characteristic
s supported

0x0150 4 bytes DWORD that is the result of a
bitwise OR operation performed
on the following values:
• 0x00000000 No special

characteristics

Information Class Data Element TAG Max.
Length

Data Encoding

• 0x00000001 Card
swallowing mechanism

• 0x00000002 Card ejection
mechanism

• 0x00000004 Card capture
mechanism

• All other values are RFU
• Vendor

Defined
Features

May use
values in
range
0x0180–
0x01F0

--

Note that the Protocol information identified above should indicate the potential range of ICC protocols and
parameters supported. The actual protocols and parameters that may be used at any given time are dictated by
the intersection of this set and the ICC supported set. This is discussed more thoroughly in Section 3.1.5

3.1.3 ICC Events

The IFD subsystem shall support the following ICC-related events:
? Card insertion notification
? Card removal notification

When one of these events occurs, it is the responsibility of the IFD Handler to notify the ICC Resource
Manager layer.

3.1.4 ICC Interface Management

The IFD Subsystem shall be able to manage the electrical interface to the ICC in accordance with Part 2 of
this specification. This includes provision of all required signals, within stated limits, at the ICC contacts and
compliance with required activation and deactivation sequences. The activation sequence includes proper
activation of the ICC contacts, performing a cold reset of the ICC, and retrieving and parsing the ATR
sequence.

As stated in Part 2, the IFD Subsystem should notify to the ICC Resource Manager in the event that a valid
ATR is not transmitted by the ICC. It is up to the ICC Resource Manager either to deactivate the card or to
proceed with the default parameters. If a valid ATR is transmitted, and the Interface Device supports
programmable protocol parameters (that is, selection of frequency, IFS, and so on) the IFD subsystem shall
parse the ATR and determine all supported protocol and associated parameter options. The supported options
for a given ICC are determined by the intersection of the options supported by the Interface Device and the
ICC (as specified in the ATR). Note that an Interface Device is required to support T=0 and T=1 only at a
default clock frequency.

To insure that the PC software can determine the state of the ICC at any time, the IFD Handler shall expose an
interface which allows the ICC state to be queried. This will include the ability to determine the following
information, through the following TLV structure.

Table 3-2. Codes for Enumerating ICC State

Information TAG Maximum
Length

Responses (return as integer)

ICC presence 0x0300 1 byte • 0 = not present
• 1 = card present but not swallowed

(applies only if the IFD
supports ICC swallowing)

• 2 = card present (and swallowed if
the IFD supports ICC
swallowing)

• 4 = card confiscated
• ICC interface status 0x0301 1 byte BOOLEAN, 0 = contact inactive

1 = contact active
ATR string 0x0303 32 bytes Contains the ATR string as returned by

the ICC.
ICC type, based on ATR
sequence

0x0304 1 byte ISO/IEC 7816 or unknown
• 0 = unknown ICC type
• 1 = 7816 Asynchronous
• 2 = 7816 Synchronous
• Other values RFU

In addition, to enable a PC application to insure that an ICC is in a known state, the IFD Subsystem will
provide a means to reinitialize an ICC using a warm reset on demand.

The IFD Subsystem is responsible for determining when unrecoverable data communications errors have
occurred and informing the logically connected ICC Service Provider, if any. At a minimum, the IFD
Subsystem shall be able to distinguish between an unresponsive ICC and unrecoverable communications
errors, indicated by repeated parity and/or checksum errors, and make this information available to a
connected ICC Service Provider. Those error codes can be defined by the operating system vendor either as
new error codes or mapped onto standard operating system error codes, provided the previous stated
requirements are met.

3.1.5. Protocol Support

In terms of the ISO 7816 layer definition, the IFD Subsystem, as a whole, is responsible for the
implementation of the physical and data link layers, as defined in 7816-3 & 10. The flow of information
between the ICC Service Provider and the IFD Subsystem is depicted in Figure 3-1 and further explained in
the following chapters. In a nutshell, the IFD subsystem hides from the application level all protocol-related
details and presents a standard interface based on ISO 7816-4 commands/responses structure

IC C Service Provider

IFD
Subsystem

ISO 7 7 7 7 /7
Application Level

ISO 7 7 7 7 /7 & 7 7
Data Link Layer

Protocol
Information/
Negotiation

ISO 7 7 7 7 /7 & 7 7
Physical Layer

ICC Command
APDU

ICC Response
APDU

Mapping of APDU’s and
responses

Figure 3-1. Role of the IFD Handler in terms of the ISO 7816 layers

3.1.5.1 Protocol Negotiation

A compliant Interface Device is required to support both the T=0 and T=1 protocols. It must support the
default global parameters and a default CLK frequency in the range of 1 to 5 MHz. It is not, however, required
to support flexible protocol and parameter selection. That is, an IFD Subsystem need only parse an ATR to
determine the default protocol and parameters.

It is recommended that Interface Devices provide support for protocol selection and setting of associated
parameters in order to maximize performance. Interface Devices providing this ability must parse the ATR and
determine the intersection of the ICC-supported options with those supported by the Interface Device. In
general, an IFD should wait until the first application connects to the device prior to negotiating the protocol
settings (using PTS). Connection requests contain hints indicating the protocol desired and an indication of
whether timing parameters should be optimized or left at the default value.

The IFD Handler will expose an interface that allows a Service Provider to enumerate current protocol setting
and parameter options. The following table indicates the available information and which of these may be set
explicitly. Explicit setting of the protocol basic timing parameters is not allowed because the IFD will
automatically negotiate these settings based on its capabilities and the ICC capabilities. Other parameters may
not be settable based on T=0 and T=1 protocol definitions.

Table 3-4. Codes for Enumerating Interface Device Protocol Options

Data Element TAG Max.
Length

Read
Only

Comments

Current Protocol Type 0x0201 4 bytes X DWORD encoded in same manner as
Available Protocol Types. It is illegal to
specify more than a single protocol in this
value.

Current CLK 0x0202 4 bytes X Current ICC CLK frequency in KHz encoded
as little endian integer value. Example: 3.58
MHz is encoded as the integer value 3580.

Current F (clock
conversion factor)

0x0203 4 bytes X F encoded as a little endian integer.
(May be modified through PTS)

Current D (bit rate
conversion factor)

0x0204 4 bytes X D encoded as a little endian integer.
(May be modified through PTS)

Current N (guard time
factor)

0x0205 4 bytes X N encoded as a little endian integer.
(May be modified through PTS)

Current W (work waiting
time)

0x0206 4 bytes X W encoded as a little endian integer. Only
valid if current protocol is to T=0.

Current IFSC
(information field size
card)

0x0207 4 bytes X IFSC encoded as a little endian integer. Only
valid if current protocol is T=1.

Current IFSD
(information field size
Reader)

0x0208 4 bytes IFSD encoded as a little endian integer. Only
valid if current protocol is T=1.

Current BWT (block
waiting time)

0x0209 4 bytes X BWT encoded as a little endian integer. Only
valid if current protocol is T=1.

Current CWT (character
waiting time)

0x020A 4 bytes X CWT encoded as a little endian integer. Only
valid if current protocol is T=1.

Current EBC encoding 0x020B 4 bytes X EBC encoded as:
• 0 = LRC
• 1 = CRC

Only valid if current protocol is T=1.

3.1.5.2 T=0 Protocol Support

From the ICC Service Provider perspective, an IFD Subsystem shall accept Case 1, 2 or 3 short APDUs, as
defined in ISO 7816-4 and asynchronously return the response from the ICC. Direct Case 4 APDU support is
not required. The IFD Subsystem shall change this APDU to TPDU for T=0 command. Especially it is
mandatory to change APDU case1 format (CLA INS P1 P2) to TPDU with P3='00' (CLA INS P1 P2 '00').

The IFD Subsystem is responsible for detecting and responding to physical link errors (bit parity errors) as
required by ISO/IEC 7816. In terms of processing ICC response bytes, the IFD Subsystem is only required to
correctly process an ICC ACK response. It will then either send remaining data associated with the last
command header or retrieve remaining data from the ICC. In this case, the IFD Subsystem does not return the
ACK byte to the ICC Service Provider.

It is not required to interpret or respond to other ICC response bytes, as these are generally application
specific, and shall return them to the ICC Service Provider.

3.1.5.3 T=1 Protocol Support

From the ICC Service Provider perspective, an IFD Subsystem shall accept APDU’s, construct the necessary
T=1 blocks to convey those APDU’s and asynchronously return the response from the ICC. It is implicit that
the ICC Service Provider has the right to transmit the first such block. The IFD Subsystem must at all times
track whether it, or the ICC, has the right to transmit. If the ICC has the right to transmit, an IFD Subsystem
may return an error if an ICC Service Provider attempts to initiate a block transmission request.

The IFD Subsystem is responsible for detecting the following errors:
? Transmission error (incorrect parity or an EDC error) denoted by the least significant nibble of the

PCB of the R-Block sent by the ICC
? BWT time-out
? Loss of synchronization (wrong number of characters received)

In the event such an error is detected, the IFD Subsystem shall interpret it to mean that the associated block is
invalid.

The IFD Subsystem is generally responsible for automatic retransmission of the last block sent, in the event of
a protocol error. A maximum of three such attempts will be made, after which the ICC shall be deactivated and
the ICC Service Provider informed that an unrecoverable error has occurred. All other errors are the
responsibility of the ICC Service Provider and/or ICC. The following lists the specific procedures to be
implemented by the IFD Subsystem:

1. If there is no response from the ICC to a block sent by the IFD within BWT, the IFD Subsystem shall
follow the scenario 33 or 35 defined in the ISO 7816-3 Annex A document, in order to try to recover
the communication. If it fails, the IFD Subsystem shall deactivate the ICC and inform the ICC
Service Provider that an unrecoverable error has occurred.

2. If an invalid block is received in response to an R-block, the sender shall retransmit the R-block.

3. If an S(response) is not received in response to an S(request), the sender shall retransmit the S(request).

4. If an invalid block is received in response to an S(response) block, the IFD Subsystem shall transmit an
R-block with bit 5 = sequence number of the next expected I-block.

5. If the IFD Subsystem detects an underrun or overrun condition, it will wait the greater of CWT or BWT
before transmitting the last block.

6. When the ICC sends an S(IFS request) and receives an invalid response, it will retransmit the block only
one time to elicit an S(IFS response) and then remain in receive mode.

The only time an IFD Subsystem is expected to initiate a block is for the purpose of establishing an IFSD
larger than the default size of 32 bytes. The IFD Subsystem should do this only as the first block following
negotiation of the T=1 protocol. In other words, the IFD Subsystem may send an S(IFS request) and then
process an S(IFS response) prior to transmitting the first ICC Service Provider block.

The ICC Service Provider should assume this will be done if the Interface Device capabilities indicate it
supports a maximum IFSD greater than 32 bytes. As such, it should wait until after the first block has been
transmitted to determine the effective IFSD setting.

Compliant IFD Subsystems provide implicit support for the chaining function, as described in ISO 7816-3, so
as to enable the IFD (the ICC) to transmit information longer than IFSC (IFSD).

Compliant IFD Subsystems may provide support for the logical sessions using the Node Addressing
mechanisms associated with T=1. If logical sessions are not supported, DAD and SAD should be set to 0
(zero).

3.1.5.4 Synchronous Protocols

Synchronous cards will be clearly specified in the 1.1 release of these specifications (in early 1998). It is
expected that synchronous card hardware must comply with ISO 7816-10.

3.1.6 Channel mechanism support

Compliant IFD Subsystems provide implicit support for the logical sessions using the ‘channel’ mechanisms
of ISO/IEC 7816-4. It is the responsibility of the ICC Service Provider, and associated ICC, to implement and
manage such channels.

3.2 Optional Functionality

3.2.1 ICC Power Management

An Interface Device may optionally support the ability to activate and deactivate an inserted ICC under
control of an ICC Service Provider. This may be desirable to minimize power consumption in certain
environments when the ICC is expected to be inserted for long periods of time, but used infrequently. If
implemented, a request to activate an ICC shall result in activation of the ICC contacts, generation of a cold
reset, and processing of the ATR sequence as specified above.

3.2.2 Mechanical Characteristics

Interface Devices may optionally support different mechanical characteristics such as ICC swallowing and
ejection. Some Interface Devices may also offer the possibility of confiscating the card (this would typically
be the case for PC-based ATM’s).

The IFD Handler Interface will expose the necessary entry points enabling an ICC Service Provider to trigger
those mechanisms.

3.2.3 Security Assurance Devices

The IFD subsystem may optionally implement various Security Assurance features. This may include:
? Isolated numeric keypad (that is, PIN pad) for entry of numeric user authentication data presented to

the ICC.
? Isolated keyboard for entry of alphanumeric authentication data presented to the ICC.
? Isolated biometric measurement device for user authentication to the ICC.
? Isolated display for presentation of ICC-generated security-critical data.

The IFD subsystem may also implement user authentication devices designed to deliver authenticating data to
the PC and associated applications. These could include:

? Isolated numeric keypad (that is, PIN pad) for entry of numeric user authentication data presented to
the ICC.

? Isolated keyboard for entry of alphanumeric authentication data presented to the ICC.
? Isolated biometric measurement device for user authentication to the ICC.

Note that the same type of data collection devices may be used to deliver authentication data to PC
applications and to an ICC. Hence, compliant Interface Devices implementing such devices may support both

functions. The routing of this data must be under the control of logic contained in the Interface Device such
that security-critical operations cannot be circumvented by software running on the PC.

3.2.4 Vendor-Specific Features

Compliant Interface Devices may implement vendor-specific features and functionality not identified in this
specification. Such features must be isolated so that they do not impact required functionality identified herein
nor allow such functionality to be circumvented.

If such features are implemented, they shall be accessible through a general purpose “escape” interface, where
“escape” is used to indicate a data exchange that is outside the normal ICC Service Provider to ICC data
exchange. The escape interface shall provide a means for an ICC Service Provider or an application to request
a specific Service by supplying a Command Code parameter, and an optional variable-length data structure.
The response to an escape request shall be an escape response specifying a completion code and optional
variable-length data structure. The implementation of such a mechanism is clearly Operating System
dependent and will not be discussed any further in this document.

0Appendix A: IFD Handler Interface Reference

This appendix summarizes the features described in detail in Chapter 3 and describes, from a functional point
of view, the different services a compliant IFD Handler interface must support. It focuses on the definition of
the services and their required parameters. Implementations may alter the naming conventions and parameters
as required to adapt to their environment. Exact values for the return codes of the different functions are also
operating-system dependent and will not be defined in this appendix.

3.3 Syntax

Each service will be described, using the following template:

RESPONSECODE Name_Of_Service (
IN DWORD param1
IN/OUT BYTE[] param2
OUT WORD param3)

In this template:
? RESPONSECODE stands for a DWORD quantity.

? Each parameter is specified as either Incoming (IN), outgoing (OUT) or both (IN/OUT).

? Each parameter is data typed.

3.4 Administrative Services

The IFD Handler Interface will expose the administrative services listed below. As described in paragraph
3.1.1, those services will appear to the calling ICC Service Provider as simple synchronous function calls.
Given the low level of complexity required by those services, in terms of operating system features, they
should be quite similar from one platform to another.

3.4.1 Retrieving an IFD Capability

RESPONSECODE IFD_Get_Capabilities(
IN DWORD Tag
OUT BYTE[] Value
)

Expected Behavior and Results

This instructs the IFD Handler to retrieve the value corresponding to the specified Tag
parameter. This enables the calling application to retrieve any of the information described from
the following TLV structures:
? Reader Capabilities (cf. Table 3-1)
? ICC Interface State (cf. Table 3-2)
? Protocol Parameters (cf. Table 3-3)

ResponseCode can be one of the following:

IFD_Success : Value was successfully retrieved.

IFD_Error_Tag : Tag does not exist.

Support

Mandatory

3.4.2 Setting an IFD Capability

RESPONSECODE IFD_Set_Capabilities(
IN DWORD Tag
OUT BYTE[] Value
)

Expected Behavior and Results

The IFD Handler will attempt to set the parameter specified by Tag to Value. This function can
be used by a calling service provider to set parameters such as the current IFSD, or to request an
extension of the Block Waiting Time.

ResponseCode can be one of the following:

IFD_Success : Parameter was successfully Set.

IFD_Error_Set_Failure : Operation failed.

IFD_Error_Tag : Tag does not exist.

IFD_Error_Value_Read_Only : The value cannot be modified.

Support

Mandatory

3.4.3 Protocol Information and Negotiation

RESPONSECODE IFD_Set_Protocol_Parameters(
IN DWORD ProtocolType
IN BYTE SelectionFlags
IN BYTE PTS1 // Encodes Clock Conversion and bit

// duration factors
IN BYTE PTS2
IN BYTE PTS3
)

Expected Behavior and Results

This function should only be called by the ICC Resource Manager layer. A Service Provider
simply specifies its preferred protocols and protocol parameters, if any, when connecting to an
ICC, and lets the ICC Resource Manager check if it is able to negotiate one of the preferred
protocols based on the ATR received from the ICC, and the IFD capabilities.

The protocol type parameter can be

• a list of protocol types, coded in the same way as for tag 0x0120 and 0x0126

• the special value IFD_DEFAULT_PROTOCOL (defined as 0x80000000)

SelectionFlags indicates which of the optional parameters (PTS1, PTS2 and PTS3),
if any, have to be negotiated and included in the PTS request. It is obtained by performing a
bitwise OR operation on the following flags:

IFD_NEGOTIATE_PTS1 1

IFD_NEGOTIATE_PTS2 2

IFD_NEGOTIATE_PTS3 4

ResponseCode can be one of the following:

IFD_Success : PTS succeeded.

IFD_Error_PTS_Failure : PTS failed.

IFD_Error_Not_supported : PTS not supported.

IFD_Protocol_Not_supported : Protocol not supported.

Support

Required.

3.4.4 ICC Power Management

RESPONSECODE IFD_Power_ICC (
IN WORD ActionRequested
)

Expected Behavior and Results

This function is used to power up, power down, or reset the ICC. The desired action is
specified by the ActionRequested parameter. The following actions are permitted:

IFD_POWER_UP : Requests activation of the contact

IFD_POWER_DOWN : Requests deactivation of the contact

IFD_RESET : Requests a warm reset of the ICC

ResponseCode can be one of the following:

IFD_Success

IFD_Error_Power_Action : The requested action could not be carried out.

IFD_Error_Not_supported : One of the requested actions is not supported.

If the function reports success and the action requested was either a reset or a power-up, then
the ATR returned by the card and the Protocol Parameters can be accessed through the
IFD_Get_Capabilities function.

Support

Mandatory for the IFD_RESET action, optional for the IFD_POWER_DOWN/UP actions.

3.4.5 Mechanical Characteristics

RESPONSECODE IFD_Swallow_ICC ()

Expected Behavior and Results

This function causes a mechanical swallow of the ICC, if the IFD supports such a feature.

ResponseCode can be one of the following:

IFD_Success : Card successfully swallowed

IFD_Error_Swallow : Card not swallowed

IFD_Error_Not_supported : Function not supported

RESPONSECODE IFD_Eject_ICC ()

Expected Behavior and Results

This function causes a mechanical ejection of the ICC, if the IFD supports such a feature.

ResponseCode can be one of the following:

IFD_Success : Card successfully ejected

IFD_Error_Eject : Card not ejected

IFD_Error_Not_supported : Function not supported

RESPONSECODE IFD_Confiscate_ICC ()

Expected Behavior and Results

This function causes the IFD to confiscate the ICC, if the IFD supports such a feature.

ResponseCode can be one of the following:

IFD_Success : Card successfully confiscated

IFD_Error_Confiscate : Card not confiscated

IFD_Error_Not_supported : Function not supported

Support

The support for these three functions is optional.

3.5Communication Services

The IFD Handler Interface will provide communication services in order to support the data exchange
between the ICC and the ICC Service Provider. Unlike the administrative services, communication
services may differ greatly in their implementation, from one platform to another, depending on the
mechanisms provided by the OS to support asynchronous communications between processes. Detailed
description of these services will be found in the reference designs provided by OS manufacturers.

3.5.1 Data Exchange with the ICC

RESPONSECODE IFD_Transmit_to_ICC (
IN BYTE [] CommandData
OUT BYTE [] ResponseData)

Expected Behavior and Results

This instructs the IFD Handler to send to the ICC the command specified in the
CommandData parameter and return the response of the ICC in the ResponseData
parameter.

1) The CommandData parameter is a binary array structured as follows :

SCARD_IO_
HEADER

PROTOCOL DATA

where :

- SCARD_IO_HEADER is defined as follows :

STRUCTURE {

DWORD Protocol;

DWORD Length;

}SCARD_IO_HEADER;

- PROTOCOL DATA contains the APDU to be sent to the card.

The APDU needs to be formatted as described in the ISO 7816-4. The 4 general cases are
supported:

• Case 1: Command with no incoming or outgoing data byte: CLA INS P1 P2

• Case 2: Command with outgoing data bytes: CLA INS P1 P2 Le

• Case 3: Command with incoming data bytes: CLA INS P1 P2 Lc [Data bytes]

• Case 4: Command with incoming and outgoing data bytes:
CLA INS P1 P2 Lc [Data bytes] Le

Only the short format of Lc and Le is supported, i.e. one byte long.

Remarks in the case of T=0 protocol:

• An incoming order with no data byte « CLA INS P1 P2 00 » should be sent through
a case 1 APDU.

• A case 4 APDU cannot be used. It is the responsibility of the application or the
service provider to generate a « get response » if they need it.

2)The ResponseData parameter will contain the optional data returned by the ICC, followed by
the 2 status words SW1-SW2.

ResponseCode can be one of the following:

IFD_Success : the request was successfully sent to the ICC,

IFD_Communication_Error : the request could not be sent to the ICC.

IFD_Response_TimeOut : the IFD timed-out waiting the response from the ICC.

3.5.2 ICC Insertion and Removal

RESPONSECODE IFD_Is_ICC_Present ()

Expected Behavior and Results

Asynchronously signals the insertion of an ICC in the Interface Device.

RESPONSECODE IFD_Is_ICC_Absent ()

Expected Behavior and Results

Asynchronously signals the removal of the ICC from the Interface Device.

	1.	Scope
	2.	IFD Subsystem Components
	2.1	Interface Device
	2.2	I/O Channel
	2.3	IFD Handler

	3.	Functionality Requirements
	3.1	Mandatory Functionality
	3.1.1	Operational characteristics
	3.1.2	Enumeration of Device Capabilities
	3.1.3	ICC Events
	3.1.4	ICC Interface Management
	3.1.5.	Protocol Support
	3.1.5.1	Protocol Negotiation
	3.1.5.2	T=0 Protocol Support
	3.1.5.3	T=1 Protocol Support
	3.1.5.4 Synchronous Protocols

	3.1.6	Channel mechanism support

	3.2	Optional Functionality
	3.2.1	ICC Power Management
	3.2.2	Mechanical Characteristics
	3.2.3	Security Assurance Devices
	3.2.4	Vendor-Specific Features

	3.3	Syntax
	3.4	Administrative Services
	3.4.1	Retrieving an IFD Capability
	3.4.2	Setting an IFD Capability
	3.4.3	Protocol Information and Negotiation
	3.4.4	ICC Power Management
	3.4.5	Mechanical Characteristics

	3.5	Communication Services
	3.5.1	Data Exchange with the ICC
	3.5.2	ICC Insertion and Removal

