
Interoperability Specification for ICCs and
Personal Computer Systems

Part 4. IFD Design Considerations and Reference Design
Information

Bull CP8, a Bull Company

Gemplus SA

Hewlett-Packard Company

IBM Corporation

Microsoft Corporation

Schlumberger SA

Siemens Nixdorf Informationssysteme AG

Sun MicroSystems Inc.

Toshiba Corporation

VeriFone Inc.

Version 1.0-
December 1997

Copyright © 1996, 1997 - Bull CP8, Gemplus, Hewlett-Packard, IBM, Microsoft, Schlumberger , Siemens Nixdorf, Sun
MicroSystems, Toshiba and VeriFone

All rights reserved.

INTELLECTUAL PROPERTY DISCLAIMER
THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER INCLUDING ANY
WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.
NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED OR INTENDED HEREBY.
BULL CP8, GEMPLUS, HEWLETT-PACKARD, IBM, MICROSOFT, SCHLUMBERGER, SIEMENS NIXDORF, SUN
MICROSYSTEMS, TOSHIBA AND VERIFONE DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR
INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION OF INFORMATION IN THIS
SPECIFICATION. BULL CP8, GEMPLUS, HEWLETT-PACKARD, IBM, MICROSOFT, SCHLUMBERGER,
SIEMENS NIXDORF, SUN MICROSYSTEMS, TOSHIBA AND VERIFONE DO NOT WARRANT OR REPRESENT
THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE SUCH RIGHTS.

Windows and Windows NT are trademarks and Microsoft and Win32 are registered trademarks of Microsoft Corporation.
PS/2 is a registered trademark of IBM Corporation. JAVA is a registered trademark of Sun Microsystems, Inc. All other product
names are trademarks, registered trademarks, or servicemarks of their respective owners.

Interoperability Specification for ICCs and Personal Computer Systems December 1997
Part 4. IFD Design Considerations and Reference Design Information

Contents

1. SCOPE 1

1.1 General Purpose of this Document 1

1.2 Scope of Information Found in this Document 2

1. 2

2. PS/2 KEYBOARD–INTEGRATED IFD 3

2.1 Rationale 3

2.2 Design Assumptions 3

2.3 PS/2 Keyboard Communication Interface 4

2.4 Keyboard Electronics 5

2.5 5

Incremental IFD Requirements 6
2.5.1 Card Socket 6
2.5.2 ICC Interface 6
2.5.3 6
Power 7

2.6 Keyboard/IFD-to-PC Interface 7
2.6.1 IFD Command Set Summary 7
2.6.2 PC to Keyboard Extended Commands 7
2.6.3 10
Keyboard-to-PC Extended Commands 11
2.6.4 IFD Status Register 12
2.6.5 IFD Error Register 13
2.6.6 Security Assurance Feature Register 13
2.6.7 Requirements for Multiplexed Operation 14

2.7 14

Security Assurance Features 15

3. 15

USB ICC IFDS 16

3.1 Rationale 16

3.2 Device Configuration 16

 1996,1997 - Bull CP8, Gemplus, Hewlett-Packard, IBM, Microsoft, Schlumberger, Siemens Nixdorf, Sun
MicroSystems, Toshiba, Verifone All Rights Reserved. Page i

Interoperability Specification for ICCs and Personal Computer Systems December 1997
Part 4. IFD Design Considerations and Reference Design Information

3.3 17

USB IFD Functionality 18

 1996,1997 - Bull CP8, Gemplus, Hewlett-Packard, IBM, Microsoft, Schlumberger, Siemens Nixdorf, Sun
MicroSystems, Toshiba, Verifone All Rights Reserved. Page ii

Interoperability Specification for ICCs and Personal Computer Systems December 1997
Part 4. IFD Design Considerations and Reference Design Information

 1996,1997 - Bull CP8, Gemplus, Hewlett-Packard, IBM, Microsoft, Schlumberger, Siemens Nixdorf, Sun
MicroSystems, Toshiba, Verifone All Rights Reserved. Page iii

1. Scope

1.1 General Purpose of this Document

This document discusses design information for IFD devices compliant with the Interoperability
Specification for ICCs and Personal Computer Systems.

An ICC Reader Device (IFD), as depicted in Figure 1.1, is a hardware device that :
• Provides an interface with the ICC, as described in Part 2 of this specification.

• Communicates with the PC-Hosted IFD Handler software (described in Part 3 of this
specification), through a given I/O channel.

The purpose of this document is to present design information on several types of IFDs, and especially
design information related to the I/O channel used by those IFDs to communicate with the PC.

Smartcard Aware Application

Smartcard Service Provider

Service Provider Manager

Reader
Handler

Reader
Handler

Reader
Handler

Reader
Device

ICC

Reader
Device

ICC

Reader
Device

ICC

Reader Handler Interface : Scope of Part 3

Interface between Reader and ICC : Scope of Part 2

I/O Channel

I/O Device
Driver

I/O Device
Driver

I/O Device
Driver

PS/2 RS 232 USB

Scope of this
Part 4

Figure 1-1. IFD Subsytem components and interfaces with other components

Four types of IFDs will be mentionned in this document :
• Integrated PS/2 keyboard IFDs, which the authors of these specifications strongly believe will be

widely adopted as PC-connected IFDs
• USB IFDs

• RS-232-connected IFDs, which are today the most common type of IFDs connected to desktop
PC’s

• PC Card–based IFDs, targeted to the laptop and notebooks environment

1.2 Scope of Information Found in this Document

As depicted in Figure 1.2, a device (and its counterpart on the PC side) can be layered into three levels.

I/O Channel
Controller

I/O Channel
Controller

I/O Device
Driver

I/O Channel
Control

Bits

Physical
Layer

Examples :
- 8042 controller
- USB Host controller
- RS 232

Control
Layer

Function
Layer

Client
Software

Device
Function

Examples :
- KBD device driver
- USB Host System SW
- Com Port driver

Data Packets

Device
Commands &
Responses Set

Examples :
- Operating system or
application level SW

Figure 1-2. Device layers

Among the different IFDs available on the market (that are either serial or PC Card IFD’s) as of today, there
does not exist a standard set of commands for IFDs, that is, there is no standardization at the Function layer.
No reference design will be presented neither for serial nor PC Card readers; vendors providing those types
of readers should provide interoperability at the IFD handler level (this topic is discussed in Part 3 of these
specifications).

The situation is different for the PS/2 keyboard: information related to the three levels is presented,
especially a complete command set that can provide a standard at the Function layer, for PS/2 keyboard
based IFDs.

Finally, for USB IFDs, the rationale for building USB IFDs and the basic design assumptions are exposed.
All requirements at the Control and Physical layers can be found in the USB specifications.

1.

2. PS/2 Keyboard–Integrated IFD

This section provides design information for vendors wishing to build a compliant IFD integrated with an
industry-standard PS/2 PC keyboard. It is believed this design will become the preferred approach to
deploying IFDs for desktop PCs. The PS/2-compatible keyboard is the most widely deployed keyboard on
PC/workstation-class machines and is supported by multiple Operating Systems. In addition, a PS/2-based
design limits the amount of desktop space required to deploy such IFDs and places them in a position that
is readily visible and accessible for the user. This information is included herein to encourage multiple
vendors to produce compliant products that will work with common device drivers.

The design information provided addresses only the components and I/O interfaces required to build a PS/2
keyboard–integrated IFD. That is, it covers design from the keyboard connector on a PC to the ICC socket
on the keyboard, inclusive.

2.1 Rationale

An obvious place to put an IFD is in the PC keyboard. It is a convenient location, being situated for easy
access by the PC user, and acting as a primary interface to the PC. In particular, it tends to be directly in
front of the user, making ICC insertion/removal simple and keeping the ICC in view of the user. In
addition, it is a large enough device to allow incorporation of an IFD without major redesign. Furthermore,
by using the keyboard microprocessor to control the IFD, the incremental cost can be very low.

Three different keyboard interface specifications exist for PCs compatible with IBM hardware
specifications. The older PC/XT keyboard is obsolete, unidirectional, and will not be discussed here. The
PS/2 keyboard is the current standard, and is bidirectional. It is likely however that Universal Serial Bus
(USB)–based keyboards will be dominant, in the future.

2.2 Design Assumptions

The design presented herein is appropriate for IFDs that take maximum advantage of existing PS/2
keyboard components to minimize device cost. In particular, it is assumed that the design will take
advantage of the existing keyboard microprocessor, clock circuits, power, and so on. As such, it is
appropriate to limit the sophistication and flexibility of the IFD. The following table summarizes expected
functionality and how this is implemented between the IFD and IFD Handler. The Keyboard device driver
is assumed to act as a part of the transmission path, but to provide no intelligence related to the IFD.

Table 2-1. Functionality Assignment for PS/2-Integrated IFD

Function IFD IFD Handler
IFD activation Upon initialization request from

IFD Handler.
Must request device
activation/determine device
presence, following power-on
sequence.

ICC insertion detection Detect ICC insertion/removal and
generate an event.

Field event and pass to active
Service Provider, if any.

ICC contact management Automatically activate ICC
contacts on card insertion; de-
activate upon removal. May
optionally support ability to
deactivate ICC contacts under PC
control.

No direct requirements, unless
IFD implements deactivation of
ICC contacts while card inserted.

ICC initialization Must perform cold reset
following ICC contact activation,
read ATR sequence if present, and
send ATR to the PC. If ATR
response time is exceeded, shall
mark card type as unknown.

May request warm reset of ICC.
Should process ATR, validate and
determine whether T=0 or T=1
protocol is to be used.

Protocol support Implements physical layer,
including T=0 mandatory
handling of bit-parity error
processing. IFD is expected to
implement only default CLK
frequency and timing parameters.

Implements T=0 and T=1 data
link layer processing and
associated error handling.

I/O line management Following reset and ATR
sequence, assumes transmission
control is determined by the IFD
Handler. Will transmit to the ICC
when a block of data is received
from the IFD Handler. It then
returns bytes from the ICC to the
Handler as received until the next
Handler data block is received.

Must send ICC data to the device
only when it has the right to
transmit. At other times, it should
wait for ICC response.

Security Assurance and
Authentication Devices

Implementation optional. Implementation optional.

2.3 PS/2 Keyboard Communication Interface

The PS/2 keyboard communicates with a PC over a 5 wire I/O port. The interface supports:
• Clock

• Data

• Spare

• Gnd

• +5V

The channel is bidirectional, half duplex. Arbitration is handled by holding the clock and data lines in
various states. There are 11 clocks per “character”: start bit (low), eight data bits, parity bit, stop bit (high)
with a nominal data rate of 10,000 cps.

The following commands are presently defined for PC communication with the PS/2 keyboard.

Table 2-2. PC-to-Keyboard Command Set

Command name Command code Description
RESET FF Keyboard reboots itself.
RESEND FE Keyboard resends last byte.
SCAN SET 3 F7-FD Reserved for SCAN SET 3.
SET DEFAULT F6 Keyboard resets to power-on state.
DEFAULT DISABLE F5 Keyboard resets to power-on state, no key

scanning.
ENABLE F4 Keyboard resumes key scanning.
SET TYPEMATIC RATE F3 Keyboard sends ACK ACK, and sets rate.
ID BYTE REQUEST F2 Keyboard sends ACK, plus ID (xx,yy)
INVALID F1 Keyboard responds with RESEND (fe).
SET SCAN SET F0 Keyboard responds with ACK.
INVALID EF Keyboard responds with RESEND (fe).
ECHO EE Keyboard sends ECHO back (ee).
INDICATOR CONTROL ED Keyboard sends ACK ACK, sets LEDs.

The following commands may be sent by a PS/2 keyboard to the PC.

Table 2-3. Keyboard-to-PC Command Set

Command name Command code Description
RESEND FE PC resends last byte.
ACK FA Acks all except ECHO and RESEND.
OVERRUN FF for ScanSet 1

00 for ScanSet 2
and 3

Marks fifo as full.

DIAGNOSTIC FAILURE FC Error during bat, or other failure.
BREAK CODE PREFIX F0 Prefix for key release code.
DIAG. COMPLETION AA Diags completed successfully.
ECHO RESPONSE EE Sent in response to ECHO command.

Note that the PS/2 data exchange protocol is an asymmetrical one. It requires that every byte sent by the PC
to the keyboard be acknowledged by the keyboard, by sending an ACK, whereas data sent from the
keyboard to the PC is not explicitly acknowledged.

2.4 Keyboard Electronics

A typical keyboard has very simple electronics, a single voltage power line, buffers for the signal and clock
lines to the PC, drivers for the LED’s, and a microprocessor. The microprocessor handles the
communication protocol, scans the key switches, and controls the LEDs.

2.5

Incremental IFD Requirements

The addition of an ICC IFD compliant with this specification will require the following components for a
minimal implementation:

• ICC socket

• Interface lines between the ICC socket and the keyboard microprocessor/supporting circuitry:

• RST

• CLK

• I/O

• Card detection

• ICC power

• VCC

• GND

• Optional I/O line(s) for ICC status LED (s), alphanumeric displays, and so on

• Buffers for signals

• ROM code to implement the required IFD logic

2.5.1 Card Socket

ICC sockets are available in a wide range of form factors from simple manual insertion devices to
sophisticated motor driven devices (socket pulls it in, software control ejects it). Given that compliant ICC
IFDs are likely to be end-user devices operated in an office environment, it is believed that the simplicity
and low cost associated with a manual socket will be preferred. This is, however, a vendor decision. In any
event, it is strongly recommended that the vendor implement a Landing Card or Landing Contact socket, as
opposed to a wiping contact socket, for long life and to minimize ICC damage. A microswitch is
recommended over a blade switch for card present detection.

2.5.2 ICC Interface

The keyboard microprocessor will require the following I/O lines, in addition to the ones already required
for normal keyboard operations (Host I/O, key scanning, LED’s, and others):

• ICC Reset (RST).

• ICC Clock (CLK).

• ICC I/O.

• ICC insertion switch.

• Card Status LEDs (optional). These would logically be used to indicate status such as proper card
insertion; contact activation status, and requests for user authentication input (if such devices
are supported).

PS/2 keyboard IFDs are expected to use the existing keyboard controller clock to generate the CLK signal
to the ICC. As such, it is expected they will support only a default CLK frequency (in the range 1–5 MHz).
It is also expected they will support only the default clock conversion factor (F) of 372 and default bit rate
conversion factor (D) of 1, though a vendor may support alternate protocol parameters. Note that if an IFD
does implement protocol and/or parameter selection, it must also implement the PTS protocol.

2.5.3

Power

Most existing ICCs are +5.0-volt devices that draw less than 50 mA current (10 mA typical). This is well
within the source capabilities of the +5V keyboard power supply provided by existing PCs. An external
power supply should not be required.

It is expected that lower-power ICC devices (≤ 3.3 V at < 10 mA) will be common. At present, there is no
standard for determining the proper voltage for operation of ISO/IEC 7816 ICCs. ISO/IEC 7816-3 is
currently being revised to address this issue. It has been proposed that two classes of cards be defined: (5 V
- Class A and 3 V - Class B) IFDs will be designated as Class A, Class B, or Class AB. When the standard
for voltage determination is established, support for < 5V ICC operation will be a required addition to this
specification.

2.6 Keyboard/IFD-to-PC Interface

When a PS/2 Keyboard with integrated IFD first powers up, it should appear to the PC as a normal PS/2
Keyboard. It is the responsibility of PC device drivers to initialize the IFD section of the device. Until this
initialization occurs, insertion of an ICC into the IFD will not result in any signals/data being sent to the
PC. The requirement on the IFD for managing the interface to the ICC in this situation. is that the vendor
must leave the ICC contacts in the inactive state. Once the device driver has initialized the IFD, it must
follow the activation sequence of the ICC in accordance with the operational requirements defined in this
specification.

2.6.1 IFD Command Set Summary

To support communication between the PC and the IFD, an extended command set is defined. These
commands are exchanged between the PC and PS/2 keyboard controller using the existing command
interface. The commands, as defined below, have some built-in redundancy to provide interface flexibility.

2.6.2 PC to Keyboard Extended Commands

Table 2-4. Extended (IFD) PC to Keyboard Command Set

Command name Command code Description
PC_to_RDR_GetRdrType 0x60 Gets IFD type.
PC_to_RDR_SetMode 0x61 Sets mode.
PC_to_RDR_CardPowerOn 0x62 Turns on power to the card socket.
PC_to_RDR_CardPowerOff 0x63 Turns off power to the card socket.
PC_to_RDR_Reset 0x64 Sends reset pulse to the smart card.
PC_to_RDR_GetRdrStatus 0x65 Gets IFD status.
PC_to_RDR_SendRdrByte 0x66 Sends one byte to IFD.
PC_to_RDR_SendRdrBlock 0x67 Sends data block to IFD.
PC_to_RDR_ResendBlock 0x68 Resends last data block.
PC_to_RDR_GetRdrCaps 0x69 Gets IFD capabilities.
PC_to_RDR_DeActivateRdr 0x6A Deactivates IFD.
PC_to_RDR_Escape 0x6B Activates IFD-dependent feature(s).
PC_to_RDR_RFU 0x6C - 0x6F Reserved for future use.

Table 2-5. Implementation Notes for Extended PC-to-Keyboard Commands

Command name Byte
sequence

Expected response
(* = see Note 2.6.1)

Notes

PC_to_RDR_GetRdrType 0x60 RDR_to_PC_Type The keyboard will activate the
IFD following power-up only
upon receipt of this command.
This should be the first IFD
command sent to the keyboard.

PC_to_RDR_SetMode 0x
B61, rr, ss,
tt, uu, vv
(cf. Table
2-6 and 2-
7)7)

* Followed by five bytes rr, ss, tt,
uu, vv. Before this command is
sent to the IFD, any command
can be sent to the IFD except:

• PC_to_RDR_SendRdrByte

• PC_to_RDR_SendRdrBloc
k,

• PC_to_RDR_CardPower
On

0x62 *
followed by a
RDR_to_PC_

DataBlock containing
the ATR

Power saving mode, and others.

PC_to_RDR_CardPowerOff 0x63 * Power saving mode, and others.
PC_to_RDR_Reset 0x64 *

followed by a
RDR_to_PC_

DataBlock containing
the ATR

Forces an immediate “warm
 reset” of the ICC if inserted. If
no ICC is present, this is a no-op.

PC_to_RDR_GetRdrStatus 0x65 RDR_to_PC_Status IFD will send back 4-byte status.

PC_to_RDR_SendRdrByte
(See Note 2.6.2)

0x66, rr * rr = data byte. The IFD shall
immediately transmit the data
byte to the ICC, if present.

PC_to_RDR_SendRdrBlock 0x
B67, rr, ss,
DataBlock

*
followed by a
RDR_to_PC_

DataBlock containing
the answer from the ICC

rr, ss = 16-bit block size. The
block size may be optimized by
the IFD vendor to minimize
potential for blocking for
keyboard input, but should never
exceed the maximum T=1 block
size of 260 bytes. This is
followed immediately by the
specified number of data bytes,
which should be immediately
transmitted to the ICC, if
present.

PC_to_RDR_ResendBlock 0x68 RDR_to_PC_
DataBlock

IFD will resend last data block.

PC_to_RDR_GetRdrCaps 0x
B69

RDR_to_PC_Caps Get IFD Capabilities as a TLV.

PC_to_RDR_DeActivateRdr 0x6A, * Resets the IFD section of a
keyboard back to its power-up
state.

PC_to_RDR_Escape 0x
B6B, rr, ss,
DataBlock
(vendor-
defined
parameters
in
DataBlock)

*
followed by a

RDR_to_PC_Escape

rr, ss = 16-bit block size. The
escape function allows the IFD
manufacturer to define and
access extended features.
Information sent via this
command is processed by the
IFD control logic. This may be
used, for example, to request that
biometric input data be returned
from IFDs so equipped.

Table 2-6. PC_to_RDR_SetMode Parameters

Parameter ATR
parameter(s)
encoded

Possible
values

Description

rr T, C, CKS 00, 02, 10, 11,
12, 13

80

Protocol Type (b4=0 for T=0, b4=1 for T=1)
Convention used (b1=0 for direct, b1=1 for inverse)
Checksum type (b0=0 for LRC, b0=1 for CRC)

Special case (See note 2.6.3)
Waiting Time extension request (the value of the
requested extension is specified by vv)

rr T, C, CKS 00, 02, 10, 11,
12, 13

Protocol Type (b4=0 for T=0, b4=1 for T=1)
Convention used (b1=0 for direct, b1=1 for inverse)
Checksum type (b0=0 for LRC, b0=1 for CRC)

ss N 00 to FE Extra Guardtime (0 to 254 etu between two characters)
tt WI 00 to FF Work Waiting Time (character time-out for T=0)
uu BWI, CWI 00 to FF Block and Char. Waiting Time (block and character

time-out for T=1)
vv WTX 00 to FF Block Waiting Time Extension.

00 = no WTX is requested by the ICC.
vv is the multiplier of the BWT value

In the event all the parameters are not transmitted in the ATR, the IFD Handler software should use the
following default values.

Table 2-7. Default values for the PC_to_RDR_SetMode Parameters

Mode rr ss tt uu vv
T=0 00 00 0A 00 00
T=1 10 00 00 4D 00

rrrr BYTE Bits

47-5

Convention for T=1

Checksum type for T=1

3 2 1 0

BWT extension for T=1

RFU

Protocol type

RFU

Figure 2-1. rr Byte encoding

Table 2-8. rr Byte encoding

Protocol Type T 0 if T=0
1 if T=1

Block Working Time
Extension WTX

1 if WTX is requested

Convention C 0 for direct convention
1 for inverse convention

Checksum CK 0 for LRC
1 for CRC

Note 2.6.1: The PS/2 protocol and, more precisely, its implementation by the various micro-controllers
found on “IBM PC compatibles” types of PC’s, require each byte sent by the PC be acknowledged by the
keyboard. This holds true also for data sent to the ICC. In other words, every single byte of a given
command must be acknowledged by the keyboard with a RDR_to_PC_Ack. This is clearly a trade-off that
favors broad compatibility with the installed base versus data throughput. However, this should still be
sufficient to accommodate the needs of today’s smart cards.

Note 2.6.2: A compliant IFD may not implement the PC_to_RDR_SendRdrByte command. If the keyboard
consistently Nacks this command, the IFD Handler software layer should use the PC_to_Rdr_SendBlock
commands instead.

Note 2.6.3 : The Waiting Time Extension, when requested, applies only to the outstanding transaction. It is
automatically reset to 0 once the ICC has sent its response.

2.6.3

Keyboard-to-PC Extended Commands

Table 2-9 Extended (IFD) Keyboard-to-PC Command Set

Command name Command code Description
RDR_to_PC_Type 0x60 Sends type info to PC.
RDR_to_PC_Status 0x61 Sends status to PC.
RDR_to_PC_Ack 0x62 ACKS last IFD command from PC.
RDR_to_PC_DataByte 0x63 One byte from IFD to PC.
RDR_to_PC_DataBlock 0x64 Sends a Data Block to PC.
RDR_to_PC_CardIn 0x65 Card inserted.
RDR_to_PC_CardOut 0x66 Card removed.
RDR_to_PC_Nack 0x67 Nacks last command (see Note 2.6.4).
RDR_to_PC_Caps 0x68 Sends TLV structure of capabilities.
RDR_to_PC_Escape 0x69 IFD-dependent feature.
RDR_to_PC_RFU 0x6A - 0x6F Reserved for future use.

Table 2-10 Implementation Notes for Extended Keyboard–to-PC Commands

Command name Byte sequence Notes
RDR_to_PC_Type 0x60, Type Sequence This returns a 16-byte vendor-defined IFD

ID. It is recommended this be generated in a
manner that ensures statistical uniqueness. It
may be of the type “PNPxxxx”, as used by
plug and play keyboards, or may be a
vendor-specific ID.

RDR_to_PC_Status 0x61,s1, s2, s3, s4 s1 = IFD status register as defined below.
s2 = Error.
s3 = Security Assurance feature register as
defined below.
s4 = RFU.

RDR_to_PC_Ack 0x62 n/a
RDR_to_PC_DataByte 0x63, rr One byte of data from the ICC.
RDR_to_PC_DataBlock 0x64, rr, ss, DataBlock Block of data. Rr, ss = 16-bit block size.

The block size may be optimized by the IFD
vendor to minimize potential for blocking
for keyboard input, but should never exceed
the maximum T=0 command size of 260
bytes (5 bytes command; 255 bytes data).
This is followed immediately by the
specified number of data bytes that should
be immediately transmitted to the PC.

RDR_to_PC_CardIn 0x65 Indicates an ICC insertion event has
occurred.

RDR_to_PC_CardOut 0x66 Indicates an ICC removal event has
occurred.

RDR_to_PC_Nack 0x67 Nacks last command
 (see Note 2.6.4).

RDR_to_PC_Caps 0x68, rr, ss, DataBlock rrss = 16 bit block size. The DataBlock is a
TLV structure that returns part of the
information described in section 3.1.2 of
Part 3 of this specification.

RDR_to_PC_Escape 0x69, rr, ss, DataBlock
(vendor-defined parameters

rr, ss = 16-bit block size. The escape
function allows the IFD manufacturer to

in DataBlock) define and access extended features.
Information sent via this command is
processed by the PC. This may be used for
any feature that a vendor wishes to define.

Note 2.6.4 : After a command has been Nacked, the driver should query the Error status register and/or the
IFD Status Register to find out the exact nature of the error (Card deactivated, Card Out, Wrong Command,
Wrong Parameter Length, and so on).

2.6.4 IFD Status Register

BYTE Bits

3 2-047-5

ICC present

Active

ICC type

RFU

Figure 2-2. IFD Status Register

In the status register, the status bits are encoded as follows.

Table 2-11. IFD Status Register Encoding

• ICC type Three bits encoded as a value in the range 0–7
• 0 = unknown
• 1 = 7816 Asynchronous
• 2 = 7816 Synchronous
• 3–7 are RFU

The ICC type should be determined based on the
presence or absence of an ATR sequence.

• ICC present 1 if an ICC is inserted in the IFD socket
• Active 1 if the ICC contacts are active

2.6.5 IFD Error Register

BYTE Bits
4-07-5

tbd error bits

Defined error bits

Figure 2-3. IFD Error Register

In the error register, the error bits are encoded as follows.

Table 2-12. IFD Error Register Encoding

• Bit 0 Set to 0: Communication parameters not set
• Bit 1 Set to 1: IFD turned OFF
• Bit 2 Set to 1: Invalid command received
• Bit 3 Set to 1: Length of block parameter > MAX
• Bit 4 Set to 1: Character parity error

The value indicating no error for this register will be 0x01 (b0 = 1 indicating that the communication
parameters have been set, and all other bits being set to 0).

2.6.6 Security Assurance Feature Register

BYTE Bits
3-07-4

Authentication Device

ICC Input Device

Figure 2-4. Security Assurance Feature Register

Table 2-13. Security Assurance Feature Register Encoding

ICC Input Device Four bits encoded as a value in the range 0–15 indicating
which device, if any, is currently active and exchanging
data with the ICC:

0 = no device active
1 = RFU
2 = PIN (numeric) keypad
3 = Keyboard
4 = Fingerprint scanner
5 = Retinal scanner
6 = Image scanner
7 = Voice print scanner
8 = Display device
9–11 are RFU
12–15 may be used for vendor defined devices

Authentication Device Four bits encoded as a value in the range 0–15 indicating
which device, if any, is currently active collecting user
authentication data for transmission to the PC:

0 = No device active
1 = RFU
2 = Encrypting PIN (numeric) keypad
3 = Encrypting keyboard
4 = Fingerprint scanner
5 = Retinal scanner
6 = Image scanner
7 = Voice scanner
8 = Display device
9–11 are RFU
12–15 may be used for vendor defined devices

2.6.7 Requirements for Multiplexed Operation

Using the command protocols defined in the preceding subsections, both the PC drivers and keyboard
controller can maintain logical separation between keyboard I/O and ICC I/O operations. Hence it is a
fairly simple matter to support multiplexing of ICC and command data over the keyboard I/O channel.

A more important issue is the potential impact of IFD operation on the processing of keyboard events. The
keyboard is a primary input device for the system, hence operation of the IFD should not interfere with user
input for extended periods of time. To insure logical separation of the event streams, it is necessary to treat
IFD commands and standard keyboard commands as atomic transfers. This introduces the potential for
blocking normal keyboard operation for lengthy periods of time. Based on ISO/IEC 7816 protocols, the
maximum data size of a single data block will not exceed 260 bytes (T=0, 5 command bytes followed by
255 data bytes). Hence, given standard keyboard I/O data rates, the maximum latency induced could be as
high as 600 ms (time required for the PC to send a 260-byte block to the keyboard). Designers should
consider this factor to insure that they have adequate keystroke buffering to avoid loss of user input during
ICC operation.

2.7

Security Assurance Features

A vendor may choose to implement security assurance features, such as PIN entry or biometric capabilities.
Sections 2.6.3 and 2.6.6 define the associated status registers and the use of the “escape” commands to
access these functions. In the opinion of the authors, these features are deemed to have significant value to
end users, in terms of protecting their interests, which will generally exceed their implementation cost
given the existing keyboard functionality. It should be noted that although this document has place holders
for using these capabilities, much work remains to be done before these capabilities can be implemented in
anything other than a vendor specific way.

3.

USB ICC IFDs

This section provides design information for vendors wishing to build a compliant USB ICC IFD. Both
dependent and independent IFDs will be discussed. An independent IFD is a stand-alone device. A
dependent IFD shares a USB interface processor with another device, such as a keyboard.

3.1 Rationale
Today, the addition of external peripherals is constrained by port availability. The Universal Serial Bus is
the answer to connectivity for PC’s. It is a bidirectional, isochronous, and low-cost bus that enables hot
plugging and supports data rates up to 12 Mbps. This is the reason why USB peripherals should become
common on PCs. Because PC hardware platforms are starting to support USB devices, a USB IFD could be
the low-cost solution for future PC’s.

3.2 Device Configuration
As described in figure 3.1, a USB device is made of three layers: the USB Interface layer, the USB Logical
Device layer and the Function layer. The Interface layer provides the physical link to the USB and
communicated with the USB Host controller. The Logical Device layer communicates with the PC driver.
The Function layer provides a specific application like keyboard, IFD, phone, speaker, mouse, and so on.

Function

USB Logical Device

USB Bus Interface

USB

Figure 3-1. USB Device Architecture

Such an architecture enables several configurations for an IFD (see figure 3-2):
• The IFD can be a separate peripheral device with a cable that plugs into a port on a hub or directly

on the Host PC. Such an IFD has its own USB interface processor and is called an
independent IFD (device 1 on Figure 3-2)

• An independent IFD can implement an embedded HUB with a single USB cable. Such a device,
known as a compound device, allows connections of other peripherals like phone, speakers,
mouse or microphone. See device 2 on Figure 3-2.

• The IFD can also be part of a physical package that implements multiple functions with a single
USB cable. Such an IFD is a called a dependent IFD. The different functions would share one
USB interface processor. These functions, being keyboard and IFD (or phone and IFD, etc.),
are permanently attached to an internal HUB connected to the USB. In USB terms, it is a
compound device. See device 3 in Figure 3-2.

Host PC

ICC
reader

Keyboard

HUB

Phone Speakers

Root HUB

ICC reader

HUB

ICC reader

HUB

Mouse

Mouse

1

2

3

Figure 3-2. Different USB IFD configurations

The authors of this specification believe the last configuration will be the most appropriate one. Indeed, it
presents most of the advantages related to the PS/2 keyboard configuration (ergonomics, cost) and, given
the higher speed of USB, it should also allow concurrent transactions from the PC to the keyboard and the
IFD. Finally, such a device can also be used as a HUB to easily connect other peripherals.

3.3

USB IFD Functionality

The following table summarizes expected functionality for a USB IFD, which has low cost as a primary
goal.

Table 3-1. Functionality Assignment for USB IFDs

Function Description
IFD activation Automatic activation while IFD is attached (hot-plugging

USB functionality).
ICC insertion detection Detection of ICC insertion/removal and generation of an

event to PC.
ICC contact management Automatic activation of ICC contacts on card insertion; IFD

deactivates upon removal. May optionally support ability to
deactivate ICC contacts under PC control.

ICC initialization IFD must perform cold reset following ICC contact
activation, read ATR sequence if present, and send ATR to
the PC. If ATR response time is exceeded, shall mark card
type as unknown.

Protocol support IFD implements physical layer, including T=0 mandatory
handling of bit-parity error processing. It is expected that
USB IFDs could handle the whole T=0 and T=1 data link
layer, taking full advantage of the USB bandwidth available.

I/O line management Following reset and ATR sequence, IFD assumes
transmission control is determined by PC. Will transmit to
the ICC when a block of data is received by the PC. It then
returns bytes from the ICC to the PC as received until the PC
data block is received.

	1.	Scope
	1.1	General Purpose of this Document
	1.2	Scope of Information Found in this Document

	1.	
	2.	PS/2 Keyboard–Integrated IFD
	2.1	Rationale
	2.2	Design Assumptions
	2.3	PS/2 Keyboard Communication Interface
	2.4	Keyboard Electronics
	2.5	
	Incremental IFD Requirements
	2.5.1	Card Socket
	2.5.2	ICC Interface
	2.5.3	
	Power

	2.6	Keyboard/IFD-to-PC Interface
	2.6.1	IFD Command Set Summary
	2.6.2	PC to Keyboard Extended Commands
	2.6.3	
	Keyboard-to-PC Extended Commands
	2.6.4	IFD Status Register
	2.6.5	 IFD Error Register
	2.6.6	Security Assurance Feature Register
	2.6.7	Requirements for Multiplexed Operation

	2.7	
	Security Assurance Features

	3.	
	USB ICC IFDs
	3.1	Rationale
	3.2	Device Configuration
	3.3	
	USB IFD Functionality

